About speedup improvement of classical genetic algoritms using CUDA environment
- Autores
- Mroginski, Javier Luis; Castro, Hugo Guillermo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
XXII Congreso de Métodos Numéricos y sus Aplicaciones
Córdoba
Argentina
Universidad Tecnológica Nacional. Facultad Regional Córdoba
Asociación Argentina de Mecánica Computacional - Materia
-
METAHEURISTIC OPTIMIZATION
CUDA
C++
HPC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/207249
Ver los metadatos del registro completo
id |
CONICETDig_a93a774afe9a5ee601c5f636fc32212b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/207249 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
About speedup improvement of classical genetic algoritms using CUDA environmentMroginski, Javier LuisCastro, Hugo GuillermoMETAHEURISTIC OPTIMIZATIONCUDAC++HPChttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%.Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ingeniería; ArgentinaFil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaXXII Congreso de Métodos Numéricos y sus AplicacionesCórdobaArgentinaUniversidad Tecnológica Nacional. Facultad Regional CórdobaAsociación Argentina de Mecánica ComputacionalAsociación Argentina de Mecánica Computacional2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/207249About speedup improvement of classical genetic algoritms using CUDA environment; XXII Congreso de Métodos Numéricos y sus Aplicaciones; Córdoba; Argentina; 2016; 3295-32952591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5203Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:46Zoai:ri.conicet.gov.ar:11336/207249instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:46.629CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
About speedup improvement of classical genetic algoritms using CUDA environment |
title |
About speedup improvement of classical genetic algoritms using CUDA environment |
spellingShingle |
About speedup improvement of classical genetic algoritms using CUDA environment Mroginski, Javier Luis METAHEURISTIC OPTIMIZATION CUDA C++ HPC |
title_short |
About speedup improvement of classical genetic algoritms using CUDA environment |
title_full |
About speedup improvement of classical genetic algoritms using CUDA environment |
title_fullStr |
About speedup improvement of classical genetic algoritms using CUDA environment |
title_full_unstemmed |
About speedup improvement of classical genetic algoritms using CUDA environment |
title_sort |
About speedup improvement of classical genetic algoritms using CUDA environment |
dc.creator.none.fl_str_mv |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author |
Mroginski, Javier Luis |
author_facet |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author_role |
author |
author2 |
Castro, Hugo Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
METAHEURISTIC OPTIMIZATION CUDA C++ HPC |
topic |
METAHEURISTIC OPTIMIZATION CUDA C++ HPC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%. Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina Fil: Castro, Hugo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina XXII Congreso de Métodos Numéricos y sus Aplicaciones Córdoba Argentina Universidad Tecnológica Nacional. Facultad Regional Córdoba Asociación Argentina de Mecánica Computacional |
description |
Due to the increasing computational cost required for the numerical solution of evolutionary systems and problems based on topological design, in the last years, many parallel algorithms have been developed in order to improve its performance. Perhaps, the main numerical tool used to solve heuristic problems is known as Genetic Algorithm (GA), deriving its name from the similarity to the evolutionary theory of Darwing. During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on Graphics Processing Units (GPGPU). Which was replaced then by the Compute Unified Device Architecture (CUDA) environment in 2007. CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of the graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this work, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks (De Jong, Rastring and Ackley functions) is presented. The obtained results using a GeForce GTX 750 Ti GPU shown that the proposed code is a valuable tool for acceleration of GAs, improving its speedup in about 130%. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/207249 About speedup improvement of classical genetic algoritms using CUDA environment; XXII Congreso de Métodos Numéricos y sus Aplicaciones; Córdoba; Argentina; 2016; 3295-3295 2591-3522 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/207249 |
identifier_str_mv |
About speedup improvement of classical genetic algoritms using CUDA environment; XXII Congreso de Métodos Numéricos y sus Aplicaciones; Córdoba; Argentina; 2016; 3295-3295 2591-3522 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5203 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981314438889472 |
score |
12.48226 |