A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture
- Autores
- Mroginski, Javier Luis; Castro, Hugo Guillermo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that the numerical solution of evolutionary systems and problems based on topological design requires a high computational power. In the last years, many parallel algorithms have been developed in order to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic algorithms inspired by Darwin´s evolution theory. From the High Performance Computing (HPC) point of view, the CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative weight of each GA operator in the whole computational cost of the algorithm.
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Castro, Hugo Guillermo. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina - Materia
-
CUDA ENVIRONMENT
GENETIC ALGORITHM
MATHEMATICAL FUNCTION OPTIMIZATION
GPU ARCHITECTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86659
Ver los metadatos del registro completo
id |
CONICETDig_597b705e1124da0878750fc01f151ddb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86659 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architectureMroginski, Javier LuisCastro, Hugo GuillermoCUDA ENVIRONMENTGENETIC ALGORITHMMATHEMATICAL FUNCTION OPTIMIZATIONGPU ARCHITECTUREhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2It is well known that the numerical solution of evolutionary systems and problems based on topological design requires a high computational power. In the last years, many parallel algorithms have been developed in order to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic algorithms inspired by Darwin´s evolution theory. From the High Performance Computing (HPC) point of view, the CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative weight of each GA operator in the whole computational cost of the algorithm.Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Castro, Hugo Guillermo. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaEmrah Evren Kara2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86659Mroginski, Javier Luis; Castro, Hugo Guillermo; A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture; Emrah Evren Kara; Communications in Advanced Mathematical Sciences; 1; 1; 9-2018; 67-832651-4001CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://dergipark.gov.tr/cams/issue/39351/459423info:eu-repo/semantics/altIdentifier/doi/10.33434/cams.459423info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:06Zoai:ri.conicet.gov.ar:11336/86659instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:06.514CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
title |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
spellingShingle |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture Mroginski, Javier Luis CUDA ENVIRONMENT GENETIC ALGORITHM MATHEMATICAL FUNCTION OPTIMIZATION GPU ARCHITECTURE |
title_short |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
title_full |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
title_fullStr |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
title_full_unstemmed |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
title_sort |
A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture |
dc.creator.none.fl_str_mv |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author |
Mroginski, Javier Luis |
author_facet |
Mroginski, Javier Luis Castro, Hugo Guillermo |
author_role |
author |
author2 |
Castro, Hugo Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CUDA ENVIRONMENT GENETIC ALGORITHM MATHEMATICAL FUNCTION OPTIMIZATION GPU ARCHITECTURE |
topic |
CUDA ENVIRONMENT GENETIC ALGORITHM MATHEMATICAL FUNCTION OPTIMIZATION GPU ARCHITECTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
It is well known that the numerical solution of evolutionary systems and problems based on topological design requires a high computational power. In the last years, many parallel algorithms have been developed in order to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic algorithms inspired by Darwin´s evolution theory. From the High Performance Computing (HPC) point of view, the CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative weight of each GA operator in the whole computational cost of the algorithm. Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Castro, Hugo Guillermo. Universidad Tecnológica Nacional. Facultad Reg. Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina |
description |
It is well known that the numerical solution of evolutionary systems and problems based on topological design requires a high computational power. In the last years, many parallel algorithms have been developed in order to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic algorithms inspired by Darwin´s evolution theory. From the High Performance Computing (HPC) point of view, the CUDA environment is probably the parallel computing platform and programming model that more heyday has had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500 fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative weight of each GA operator in the whole computational cost of the algorithm. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86659 Mroginski, Javier Luis; Castro, Hugo Guillermo; A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture; Emrah Evren Kara; Communications in Advanced Mathematical Sciences; 1; 1; 9-2018; 67-83 2651-4001 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86659 |
identifier_str_mv |
Mroginski, Javier Luis; Castro, Hugo Guillermo; A metaheuristic optimization algorithm for multimodal benchmark function in a GPU architecture; Emrah Evren Kara; Communications in Advanced Mathematical Sciences; 1; 1; 9-2018; 67-83 2651-4001 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dergipark.gov.tr/cams/issue/39351/459423 info:eu-repo/semantics/altIdentifier/doi/10.33434/cams.459423 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Emrah Evren Kara |
publisher.none.fl_str_mv |
Emrah Evren Kara |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269135895003136 |
score |
13.13397 |