Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique

Autores
Di Rado, Héctor Ariel; Beneyto, Pablo Alejandro; Mroginski, Javier Luis
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non- saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations stand- ing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be car- ried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.
Fuente
Journal of Biosciences and Medicine, 2020, vol. 8, p. 73-81.
Materia
Cancer
Tumour growth
Mathematical modelling
Stress state decomposition technique
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/53130

id RIUNNE_6a44dba1455b66ed906c9f737697e52f
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/53130
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition techniqueDi Rado, Héctor ArielBeneyto, Pablo AlejandroMroginski, Javier LuisCancerTumour growthMathematical modellingStress state decomposition techniqueFil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non- saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations stand- ing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be car- ried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.Scientific Research Publishing2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 73-81application/pdfDi Rado, Héctor Ariel, Beneyto, Pablo Alejandro y Mroginski, Javier Luis, 2020. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicine. Estados Unidos: Scientific Research Publishing, vol. 8, no. 2, p. 73-81. E-ISSN 2327-509X.2327-5081http://repositorio.unne.edu.ar/handle/123456789/53130Journal of Biosciences and Medicine, 2020, vol. 8, p. 73-81.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-29T14:29:44Zoai:repositorio.unne.edu.ar:123456789/53130instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-29 14:29:44.91Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
spellingShingle Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
Di Rado, Héctor Ariel
Cancer
Tumour growth
Mathematical modelling
Stress state decomposition technique
title_short Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_full Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_fullStr Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_full_unstemmed Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_sort Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
dc.creator.none.fl_str_mv Di Rado, Héctor Ariel
Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author Di Rado, Héctor Ariel
author_facet Di Rado, Héctor Ariel
Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author_role author
author2 Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author2_role author
author
dc.subject.none.fl_str_mv Cancer
Tumour growth
Mathematical modelling
Stress state decomposition technique
topic Cancer
Tumour growth
Mathematical modelling
Stress state decomposition technique
dc.description.none.fl_txt_mv Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non- saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations stand- ing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be car- ried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.
description Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Di Rado, Héctor Ariel, Beneyto, Pablo Alejandro y Mroginski, Javier Luis, 2020. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicine. Estados Unidos: Scientific Research Publishing, vol. 8, no. 2, p. 73-81. E-ISSN 2327-509X.
2327-5081
http://repositorio.unne.edu.ar/handle/123456789/53130
identifier_str_mv Di Rado, Héctor Ariel, Beneyto, Pablo Alejandro y Mroginski, Javier Luis, 2020. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicine. Estados Unidos: Scientific Research Publishing, vol. 8, no. 2, p. 73-81. E-ISSN 2327-509X.
2327-5081
url http://repositorio.unne.edu.ar/handle/123456789/53130
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 73-81
application/pdf
dc.publisher.none.fl_str_mv Scientific Research Publishing
publisher.none.fl_str_mv Scientific Research Publishing
dc.source.none.fl_str_mv Journal of Biosciences and Medicine, 2020, vol. 8, p. 73-81.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1844621672657715200
score 12.559606