Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique

Autores
Di Rado, Hector Ariel; Beneyto, Pablo Alejandro; Mroginski, Javier Luis
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non-saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations standing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be carried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.
Fil: Di Rado, Hector Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Materia
CANCER
TUMOUR GROWTH
MATHEMATICAL MODELLING
STRESS STATE DECOMPOSITION TECHNIQUE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/152817

id CONICETDig_c5115d497e0f19102e35eb38222c0c22
oai_identifier_str oai:ri.conicet.gov.ar:11336/152817
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition techniqueDi Rado, Hector ArielBeneyto, Pablo AlejandroMroginski, Javier LuisCANCERTUMOUR GROWTHMATHEMATICAL MODELLINGSTRESS STATE DECOMPOSITION TECHNIQUEhttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non-saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations standing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be carried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.Fil: Di Rado, Hector Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; ArgentinaFil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaScientific Research Publishing2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152817Di Rado, Hector Ariel; Beneyto, Pablo Alejandro; Mroginski, Javier Luis; Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique; Scientific Research Publishing; Journal of Biosciences and Medicines; 08; 02; 2-2020; 73-812327-50812327-509XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4236/jbm.2020.82006info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=98166info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:23Zoai:ri.conicet.gov.ar:11336/152817instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:23.859CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
spellingShingle Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
Di Rado, Hector Ariel
CANCER
TUMOUR GROWTH
MATHEMATICAL MODELLING
STRESS STATE DECOMPOSITION TECHNIQUE
title_short Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_full Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_fullStr Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_full_unstemmed Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
title_sort Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique
dc.creator.none.fl_str_mv Di Rado, Hector Ariel
Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author Di Rado, Hector Ariel
author_facet Di Rado, Hector Ariel
Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author_role author
author2 Beneyto, Pablo Alejandro
Mroginski, Javier Luis
author2_role author
author
dc.subject.none.fl_str_mv CANCER
TUMOUR GROWTH
MATHEMATICAL MODELLING
STRESS STATE DECOMPOSITION TECHNIQUE
topic CANCER
TUMOUR GROWTH
MATHEMATICAL MODELLING
STRESS STATE DECOMPOSITION TECHNIQUE
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.4
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non-saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations standing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be carried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.
Fil: Di Rado, Hector Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
description The main goal of the present paper is to present a mathematical framework for modelling tumour growth based on stress state decomposition technique (SSDT). This is a straightforward extension of the model for multi-phase non-saturated soil consolidation with pollutant transport presented by the authors and may be regarded as an alternative to classical frameworks based on TCAT theory. In this preliminary work, the Representative Volume Element (RVE) for tumour is proposed along with its comparison with the corresponding one for soils modelling developed formerly by the authors. Equations standing for tumour phase are flawlessly brought into correspondence with those of gaseous phase in the soil problem showing that a similar task may be carried out for the remainders phases taking part in both RVEs. Furthermore, stresses induced by nonlinear saturation and permeability dependence on suction for soil interstitial fluids transport finds its counterpart on the contact between the cancer cell membrane and interstitial fluids rendering a higher primary variables coupling degree than what was attained in TCAT theory. From these preliminaries assessments, it may be put forward that likewise the stress state decomposition procedure stands for an alternative for modelling multi-phase nonsaturated soil consolidation with pollutant transport; it does for modelling cancer as well.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/152817
Di Rado, Hector Ariel; Beneyto, Pablo Alejandro; Mroginski, Javier Luis; Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique; Scientific Research Publishing; Journal of Biosciences and Medicines; 08; 02; 2-2020; 73-81
2327-5081
2327-509X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/152817
identifier_str_mv Di Rado, Hector Ariel; Beneyto, Pablo Alejandro; Mroginski, Javier Luis; Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique; Scientific Research Publishing; Journal of Biosciences and Medicines; 08; 02; 2-2020; 73-81
2327-5081
2327-509X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4236/jbm.2020.82006
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=98166
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Scientific Research Publishing
publisher.none.fl_str_mv Scientific Research Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614384069902336
score 13.070432