Mathematical modelling of microtumour infiltration based on in vitro experiments
- Autores
- Luján, Emmanuel; Guerra, Liliana Noemi; Soba, Alejandro; Visacovsk, Nicolás; Gandia, Daniel; Calvo, Juan Carlos; Suárez, Cecilia Ana
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment.
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Visacovsk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Gandia, Daniel. Sanatorio de Los Arcos; Argentina
Fil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina - Materia
-
TUMOUR INFILTRATION
IN VITRO EXPERIMENTS
MATHEMATICAL MODELLING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24157
Ver los metadatos del registro completo
id |
CONICETDig_b42c0904250f1ff6054f5fa33ab16882 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24157 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical modelling of microtumour infiltration based on in vitro experimentsLuján, EmmanuelGuerra, Liliana NoemiSoba, AlejandroVisacovsk, NicolásGandia, DanielCalvo, Juan CarlosSuárez, Cecilia AnaTUMOUR INFILTRATIONIN VITRO EXPERIMENTSMATHEMATICAL MODELLINGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Visacovsk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Gandia, Daniel. Sanatorio de Los Arcos; ArgentinaFil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaRoyal Society of Chemistry2016-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24157Luján, Emmanuel; Guerra, Liliana Noemi; Soba, Alejandro; Visacovsk, Nicolás; Gandia, Daniel; et al.; Mathematical modelling of microtumour infiltration based on in vitro experiments; Royal Society of Chemistry; Integrative Biology; 8; 8; 8-8-2016; 879-8851757-96941757-9708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/IB/C6IB00110Finfo:eu-repo/semantics/altIdentifier/doi/10.1039/c6ib00110finfo:eu-repo/semantics/altIdentifier/pmid/27466056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:24Zoai:ri.conicet.gov.ar:11336/24157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:24.844CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
title |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
spellingShingle |
Mathematical modelling of microtumour infiltration based on in vitro experiments Luján, Emmanuel TUMOUR INFILTRATION IN VITRO EXPERIMENTS MATHEMATICAL MODELLING |
title_short |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
title_full |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
title_fullStr |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
title_full_unstemmed |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
title_sort |
Mathematical modelling of microtumour infiltration based on in vitro experiments |
dc.creator.none.fl_str_mv |
Luján, Emmanuel Guerra, Liliana Noemi Soba, Alejandro Visacovsk, Nicolás Gandia, Daniel Calvo, Juan Carlos Suárez, Cecilia Ana |
author |
Luján, Emmanuel |
author_facet |
Luján, Emmanuel Guerra, Liliana Noemi Soba, Alejandro Visacovsk, Nicolás Gandia, Daniel Calvo, Juan Carlos Suárez, Cecilia Ana |
author_role |
author |
author2 |
Guerra, Liliana Noemi Soba, Alejandro Visacovsk, Nicolás Gandia, Daniel Calvo, Juan Carlos Suárez, Cecilia Ana |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
TUMOUR INFILTRATION IN VITRO EXPERIMENTS MATHEMATICAL MODELLING |
topic |
TUMOUR INFILTRATION IN VITRO EXPERIMENTS MATHEMATICAL MODELLING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment. Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Visacovsk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Gandia, Daniel. Sanatorio de Los Arcos; Argentina Fil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina |
description |
The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24157 Luján, Emmanuel; Guerra, Liliana Noemi; Soba, Alejandro; Visacovsk, Nicolás; Gandia, Daniel; et al.; Mathematical modelling of microtumour infiltration based on in vitro experiments; Royal Society of Chemistry; Integrative Biology; 8; 8; 8-8-2016; 879-885 1757-9694 1757-9708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24157 |
identifier_str_mv |
Luján, Emmanuel; Guerra, Liliana Noemi; Soba, Alejandro; Visacovsk, Nicolás; Gandia, Daniel; et al.; Mathematical modelling of microtumour infiltration based on in vitro experiments; Royal Society of Chemistry; Integrative Biology; 8; 8; 8-8-2016; 879-885 1757-9694 1757-9708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/IB/C6IB00110F info:eu-repo/semantics/altIdentifier/doi/10.1039/c6ib00110f info:eu-repo/semantics/altIdentifier/pmid/27466056 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614300343205888 |
score |
13.070432 |