New Results on Idempotent Operators in Hilbert Spaces
- Autores
- Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Furuichi, Shigeru
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper provides a new proof of the operator norm identity ∥Q∥ = ∥I −Q∥, where Q is abounded idempotent operator on a complex Hilbert space, and I is the identity operator. Wealso derive explicit lower and upper bounds for the distance from an arbitrary idempotentoperator to the set of orthogonal projections. Our approach simplifies existing proofs.
Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, Kais. Najran University; Arabia Saudita
Fil: Furuichi, Shigeru. Nihon University; Japón - Materia
-
idempotent operators
operator norm
orthogonal projections
oblique projections - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274695
Ver los metadatos del registro completo
| id |
CONICETDig_ec048bd751be79a12635a58f16677241 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274695 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
New Results on Idempotent Operators in Hilbert SpacesAljawi, SalmaConde, Cristian MarceloFeki, KaisFuruichi, Shigeruidempotent operatorsoperator normorthogonal projectionsoblique projectionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper provides a new proof of the operator norm identity ∥Q∥ = ∥I −Q∥, where Q is abounded idempotent operator on a complex Hilbert space, and I is the identity operator. Wealso derive explicit lower and upper bounds for the distance from an arbitrary idempotentoperator to the set of orthogonal projections. Our approach simplifies existing proofs.Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia SauditaFil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feki, Kais. Najran University; Arabia SauditaFil: Furuichi, Shigeru. Nihon University; JapónMultidisciplinary Digital Publishing Institute2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274695Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Furuichi, Shigeru; New Results on Idempotent Operators in Hilbert Spaces; Multidisciplinary Digital Publishing Institute; Axioms; 14; 7; 6-2025; 1-182075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/14/7/509info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms14070509info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:35:25Zoai:ri.conicet.gov.ar:11336/274695instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:35:25.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
New Results on Idempotent Operators in Hilbert Spaces |
| title |
New Results on Idempotent Operators in Hilbert Spaces |
| spellingShingle |
New Results on Idempotent Operators in Hilbert Spaces Aljawi, Salma idempotent operators operator norm orthogonal projections oblique projections |
| title_short |
New Results on Idempotent Operators in Hilbert Spaces |
| title_full |
New Results on Idempotent Operators in Hilbert Spaces |
| title_fullStr |
New Results on Idempotent Operators in Hilbert Spaces |
| title_full_unstemmed |
New Results on Idempotent Operators in Hilbert Spaces |
| title_sort |
New Results on Idempotent Operators in Hilbert Spaces |
| dc.creator.none.fl_str_mv |
Aljawi, Salma Conde, Cristian Marcelo Feki, Kais Furuichi, Shigeru |
| author |
Aljawi, Salma |
| author_facet |
Aljawi, Salma Conde, Cristian Marcelo Feki, Kais Furuichi, Shigeru |
| author_role |
author |
| author2 |
Conde, Cristian Marcelo Feki, Kais Furuichi, Shigeru |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
idempotent operators operator norm orthogonal projections oblique projections |
| topic |
idempotent operators operator norm orthogonal projections oblique projections |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This paper provides a new proof of the operator norm identity ∥Q∥ = ∥I −Q∥, where Q is abounded idempotent operator on a complex Hilbert space, and I is the identity operator. Wealso derive explicit lower and upper bounds for the distance from an arbitrary idempotentoperator to the set of orthogonal projections. Our approach simplifies existing proofs. Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Feki, Kais. Najran University; Arabia Saudita Fil: Furuichi, Shigeru. Nihon University; Japón |
| description |
This paper provides a new proof of the operator norm identity ∥Q∥ = ∥I −Q∥, where Q is abounded idempotent operator on a complex Hilbert space, and I is the identity operator. Wealso derive explicit lower and upper bounds for the distance from an arbitrary idempotentoperator to the set of orthogonal projections. Our approach simplifies existing proofs. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274695 Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Furuichi, Shigeru; New Results on Idempotent Operators in Hilbert Spaces; Multidisciplinary Digital Publishing Institute; Axioms; 14; 7; 6-2025; 1-18 2075-1680 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274695 |
| identifier_str_mv |
Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Furuichi, Shigeru; New Results on Idempotent Operators in Hilbert Spaces; Multidisciplinary Digital Publishing Institute; Axioms; 14; 7; 6-2025; 1-18 2075-1680 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/14/7/509 info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms14070509 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978040717475840 |
| score |
13.087074 |