p-Schatten commutators of projections
- Autores
- Andruchow, Esteban; Di Iorio y Lucero, María Eugenia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected. - Fuente
- Annals of Functional Analysis. 2021; 12(2): 1-20
https://link.springer.com/journal/43034/volumes-and-issues/12-2 - Materia
-
Projections
Schatten P-Ideals - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1819
Ver los metadatos del registro completo
id |
RIUNGS_b08b02cf0b17d4870c3598f7d5ad4cac |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1819 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
p-Schatten commutators of projectionsAndruchow, EstebanDi Iorio y Lucero, María EugeniaProjectionsSchatten P-IdealsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected.Birkhauser2024-12-23T14:30:42Z2024-12-23T14:30:42Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20.2008-8752http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819Annals of Functional Analysis. 2021; 12(2): 1-20https://link.springer.com/journal/43034/volumes-and-issues/12-2reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s43034-021-00116-xinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:05Zoai:repositorio.ungs.edu.ar:UNGS/1819instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:05.684Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
p-Schatten commutators of projections |
title |
p-Schatten commutators of projections |
spellingShingle |
p-Schatten commutators of projections Andruchow, Esteban Projections Schatten P-Ideals |
title_short |
p-Schatten commutators of projections |
title_full |
p-Schatten commutators of projections |
title_fullStr |
p-Schatten commutators of projections |
title_full_unstemmed |
p-Schatten commutators of projections |
title_sort |
p-Schatten commutators of projections |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Di Iorio y Lucero, María Eugenia |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Di Iorio y Lucero, María Eugenia |
author_role |
author |
author2 |
Di Iorio y Lucero, María Eugenia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Projections Schatten P-Ideals |
topic |
Projections Schatten P-Ideals |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2024-12-23T14:30:42Z 2024-12-23T14:30:42Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20. 2008-8752 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819 |
identifier_str_mv |
Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20. 2008-8752 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1007/s43034-021-00116-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser |
publisher.none.fl_str_mv |
Birkhauser |
dc.source.none.fl_str_mv |
Annals of Functional Analysis. 2021; 12(2): 1-20 https://link.springer.com/journal/43034/volumes-and-issues/12-2 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346538580312064 |
score |
12.623145 |