p-Schatten commutators of projections

Autores
Andruchow, Esteban; Di Iorio y Lucero, María Eugenia
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected.
Fuente
Annals of Functional Analysis. 2021; 12(2): 1-20
https://link.springer.com/journal/43034/volumes-and-issues/12-2
Materia
Projections
Schatten P-Ideals
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1819

id RIUNGS_b08b02cf0b17d4870c3598f7d5ad4cac
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1819
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling p-Schatten commutators of projectionsAndruchow, EstebanDi Iorio y Lucero, María EugeniaProjectionsSchatten P-IdealsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected.Birkhauser2024-12-23T14:30:42Z2024-12-23T14:30:42Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20.2008-8752http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819Annals of Functional Analysis. 2021; 12(2): 1-20https://link.springer.com/journal/43034/volumes-and-issues/12-2reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s43034-021-00116-xinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:05Zoai:repositorio.ungs.edu.ar:UNGS/1819instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:05.684Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv p-Schatten commutators of projections
title p-Schatten commutators of projections
spellingShingle p-Schatten commutators of projections
Andruchow, Esteban
Projections
Schatten P-Ideals
title_short p-Schatten commutators of projections
title_full p-Schatten commutators of projections
title_fullStr p-Schatten commutators of projections
title_full_unstemmed p-Schatten commutators of projections
title_sort p-Schatten commutators of projections
dc.creator.none.fl_str_mv Andruchow, Esteban
Di Iorio y Lucero, María Eugenia
author Andruchow, Esteban
author_facet Andruchow, Esteban
Di Iorio y Lucero, María Eugenia
author_role author
author2 Di Iorio y Lucero, María Eugenia
author2_role author
dc.subject.none.fl_str_mv Projections
Schatten P-Ideals
topic Projections
Schatten P-Ideals
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let H= H+? H- be a fixed orthogonal decomposition of the complex separable Hilbert space H in two infinite-dimensional subspaces. We study the geometry of the set Pp of selfadjoint projections in the Banach algebra Ap= { A? B(H) : [A, E+] ? Bp(H) } , where E+ is the projection onto H+ and Bp(H) is the Schatten ideal of p-summable operators (1 ? p< ?). The norm in Ap is defined in terms of the norms of the matrix entries of the operators given by the above decomposition. The space Pp is shown to be a differentiable C? submanifold of Ap, and a homogeneous space of the group of unitary operators in Ap. The connected components of Pp are characterized, by means of a partition of Pp in nine classes, four discrete classes, and five essential classes: (1) the first two corresponding to finite rank or co-rank, with the connected components parametrized by these ranks; (2) the next two discrete classes carrying a Fredholm index, which parametrizes their components; (3) the remaining essential classes, which are connected.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2021
dc.date.none.fl_str_mv 2021
2024-12-23T14:30:42Z
2024-12-23T14:30:42Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20.
2008-8752
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819
identifier_str_mv Andruchow, E. y Di Iorio y Lucero, M. E. (2021). p-Schatten commutators of projections. Annals of Functional Analysis, 12(2), 1-20.
2008-8752
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1819
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1007/s43034-021-00116-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Birkhauser
publisher.none.fl_str_mv Birkhauser
dc.source.none.fl_str_mv Annals of Functional Analysis. 2021; 12(2): 1-20
https://link.springer.com/journal/43034/volumes-and-issues/12-2
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1842346538580312064
score 12.623145