A supervised graph-based deep learning algorithm to detect and quantify clustered particles

Autores
Saavedra, Lucas A.; Mosqueira, Alejo; Barrantes, Francisco J.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Considerable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.
Fuente
Nanoscale. 32, 2024.
Materia
MEMBRANAS CELULARES
TOPOGRAFIA
PROTEINAS
APRENDIZAJE PROFUNDO
ALGORITMOS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/20070

id RIUCA_813a916256e953f9b69165d2c5652075
oai_identifier_str oai:ucacris:123456789/20070
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling A supervised graph-based deep learning algorithm to detect and quantify clustered particlesSaavedra, Lucas A.Mosqueira, AlejoBarrantes, Francisco J.MEMBRANAS CELULARESTOPOGRAFIAPROTEINASAPRENDIZAJE PROFUNDOALGORITMOSFil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaFil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaFil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaConsiderable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.Royal Society of Chemistry2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/200702040-337210.1039/d4nr01944jNanoscale. 32, 2024.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-11-27T10:21:37Zoai:ucacris:123456789/20070instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-11-27 10:21:38.284Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv A supervised graph-based deep learning algorithm to detect and quantify clustered particles
title A supervised graph-based deep learning algorithm to detect and quantify clustered particles
spellingShingle A supervised graph-based deep learning algorithm to detect and quantify clustered particles
Saavedra, Lucas A.
MEMBRANAS CELULARES
TOPOGRAFIA
PROTEINAS
APRENDIZAJE PROFUNDO
ALGORITMOS
title_short A supervised graph-based deep learning algorithm to detect and quantify clustered particles
title_full A supervised graph-based deep learning algorithm to detect and quantify clustered particles
title_fullStr A supervised graph-based deep learning algorithm to detect and quantify clustered particles
title_full_unstemmed A supervised graph-based deep learning algorithm to detect and quantify clustered particles
title_sort A supervised graph-based deep learning algorithm to detect and quantify clustered particles
dc.creator.none.fl_str_mv Saavedra, Lucas A.
Mosqueira, Alejo
Barrantes, Francisco J.
author Saavedra, Lucas A.
author_facet Saavedra, Lucas A.
Mosqueira, Alejo
Barrantes, Francisco J.
author_role author
author2 Mosqueira, Alejo
Barrantes, Francisco J.
author2_role author
author
dc.subject.none.fl_str_mv MEMBRANAS CELULARES
TOPOGRAFIA
PROTEINAS
APRENDIZAJE PROFUNDO
ALGORITMOS
topic MEMBRANAS CELULARES
TOPOGRAFIA
PROTEINAS
APRENDIZAJE PROFUNDO
ALGORITMOS
dc.description.none.fl_txt_mv Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Considerable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.
description Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/20070
2040-3372
10.1039/d4nr01944j
url https://repositorio.uca.edu.ar/handle/123456789/20070
identifier_str_mv 2040-3372
10.1039/d4nr01944j
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv Nanoscale. 32, 2024.
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1849951647828017152
score 12.50043