A supervised graph-based deep learning algorithm to detect and quantify clustered particles
- Autores
- Saavedra, Lucas A.; Mosqueira, Alejo; Barrantes, Francisco J.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina
Considerable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells. - Fuente
- Nanoscale. 32, 2024.
- Materia
-
MEMBRANAS CELULARES
TOPOGRAFIA
PROTEINAS
APRENDIZAJE PROFUNDO
ALGORITMOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/20070
Ver los metadatos del registro completo
| id |
RIUCA_813a916256e953f9b69165d2c5652075 |
|---|---|
| oai_identifier_str |
oai:ucacris:123456789/20070 |
| network_acronym_str |
RIUCA |
| repository_id_str |
2585 |
| network_name_str |
Repositorio Institucional (UCA) |
| spelling |
A supervised graph-based deep learning algorithm to detect and quantify clustered particlesSaavedra, Lucas A.Mosqueira, AlejoBarrantes, Francisco J.MEMBRANAS CELULARESTOPOGRAFIAPROTEINASAPRENDIZAJE PROFUNDOALGORITMOSFil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaFil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaFil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; ArgentinaConsiderable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.Royal Society of Chemistry2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/200702040-337210.1039/d4nr01944jNanoscale. 32, 2024.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-11-27T10:21:37Zoai:ucacris:123456789/20070instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-11-27 10:21:38.284Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
| dc.title.none.fl_str_mv |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| title |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| spellingShingle |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles Saavedra, Lucas A. MEMBRANAS CELULARES TOPOGRAFIA PROTEINAS APRENDIZAJE PROFUNDO ALGORITMOS |
| title_short |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| title_full |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| title_fullStr |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| title_full_unstemmed |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| title_sort |
A supervised graph-based deep learning algorithm to detect and quantify clustered particles |
| dc.creator.none.fl_str_mv |
Saavedra, Lucas A. Mosqueira, Alejo Barrantes, Francisco J. |
| author |
Saavedra, Lucas A. |
| author_facet |
Saavedra, Lucas A. Mosqueira, Alejo Barrantes, Francisco J. |
| author_role |
author |
| author2 |
Mosqueira, Alejo Barrantes, Francisco J. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
MEMBRANAS CELULARES TOPOGRAFIA PROTEINAS APRENDIZAJE PROFUNDO ALGORITMOS |
| topic |
MEMBRANAS CELULARES TOPOGRAFIA PROTEINAS APRENDIZAJE PROFUNDO ALGORITMOS |
| dc.description.none.fl_txt_mv |
Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina Considerable efforts are currently being devoted to characterizing the topography of membraneembedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells. |
| description |
Fil: Saavedra, Lucas A. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas; Argentina |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/20070 2040-3372 10.1039/d4nr01944j |
| url |
https://repositorio.uca.edu.ar/handle/123456789/20070 |
| identifier_str_mv |
2040-3372 10.1039/d4nr01944j |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.source.none.fl_str_mv |
Nanoscale. 32, 2024. reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
| reponame_str |
Repositorio Institucional (UCA) |
| collection |
Repositorio Institucional (UCA) |
| instname_str |
Pontificia Universidad Católica Argentina |
| repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
| repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
| _version_ |
1849951647828017152 |
| score |
12.50043 |