Pip water transport and its pH dependence are regulated by tetramer stoichiometry
- Autores
- Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela Cinthia; Ayub, Nicolás Daniel; Pietrasanta, Lía Isabel; Amodeo, Gabriela; Gonzalez Flecha, Francisco Luis; Alleva, Karina Edith
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.
Inst. de Genética "Ewald A. Favret"- IGEAF
Fil: Jozefkowicz, Cintia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sigaut, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina
Fil: Scochera, Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biologia Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Gonzalez Flecha, Francisco Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alleva, Karina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina - Fuente
- Biophysical Journal 110 (6) :1312-1321. (March 2016)
- Materia
-
Agua
Ph
Membranas Celulares
Water
Cell Membranes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/1083
Ver los metadatos del registro completo
id |
INTADig_bfade250b7b01f7b33c96b55b54cc4a0 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/1083 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Pip water transport and its pH dependence are regulated by tetramer stoichiometryJozefkowicz, CintiaSigaut, LorenaScochera, FlorenciaSoto, Gabriela CinthiaAyub, Nicolás DanielPietrasanta, Lía IsabelAmodeo, GabrielaGonzalez Flecha, Francisco LuisAlleva, Karina EdithAguaPhMembranas CelularesWaterCell MembranesMany plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.Inst. de Genética "Ewald A. Favret"- IGEAFFil: Jozefkowicz, Cintia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sigaut, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; ArgentinaFil: Scochera, Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; ArgentinaFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biologia Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Gonzalez Flecha, Francisco Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alleva, Karina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina2017-08-30T15:15:22Z2017-08-30T15:15:22Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1083http://ac.els-cdn.com/S0006349516001351/1-s2.0-S0006349516001351-main.pdf?_tid=da62a74e-8d97-11e7-b453-00000aacb361&acdnat=1504107080_124ed9f2ea10addd83bfe98d746c19210006-3495 (Print)1542-0086 (Online)https://doi.org/10.1016/j.bpj.2016.01.026Biophysical Journal 110 (6) :1312-1321. (March 2016)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:46:58Zoai:localhost:20.500.12123/1083instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:46:59.271INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
title |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
spellingShingle |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry Jozefkowicz, Cintia Agua Ph Membranas Celulares Water Cell Membranes |
title_short |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
title_full |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
title_fullStr |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
title_full_unstemmed |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
title_sort |
Pip water transport and its pH dependence are regulated by tetramer stoichiometry |
dc.creator.none.fl_str_mv |
Jozefkowicz, Cintia Sigaut, Lorena Scochera, Florencia Soto, Gabriela Cinthia Ayub, Nicolás Daniel Pietrasanta, Lía Isabel Amodeo, Gabriela Gonzalez Flecha, Francisco Luis Alleva, Karina Edith |
author |
Jozefkowicz, Cintia |
author_facet |
Jozefkowicz, Cintia Sigaut, Lorena Scochera, Florencia Soto, Gabriela Cinthia Ayub, Nicolás Daniel Pietrasanta, Lía Isabel Amodeo, Gabriela Gonzalez Flecha, Francisco Luis Alleva, Karina Edith |
author_role |
author |
author2 |
Sigaut, Lorena Scochera, Florencia Soto, Gabriela Cinthia Ayub, Nicolás Daniel Pietrasanta, Lía Isabel Amodeo, Gabriela Gonzalez Flecha, Francisco Luis Alleva, Karina Edith |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Agua Ph Membranas Celulares Water Cell Membranes |
topic |
Agua Ph Membranas Celulares Water Cell Membranes |
dc.description.none.fl_txt_mv |
Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. Inst. de Genética "Ewald A. Favret"- IGEAF Fil: Jozefkowicz, Cintia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sigaut, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina Fil: Scochera, Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biologia Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Gonzalez Flecha, Francisco Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alleva, Karina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina |
description |
Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2017-08-30T15:15:22Z 2017-08-30T15:15:22Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/1083 http://ac.els-cdn.com/S0006349516001351/1-s2.0-S0006349516001351-main.pdf?_tid=da62a74e-8d97-11e7-b453-00000aacb361&acdnat=1504107080_124ed9f2ea10addd83bfe98d746c1921 0006-3495 (Print) 1542-0086 (Online) https://doi.org/10.1016/j.bpj.2016.01.026 |
url |
http://hdl.handle.net/20.500.12123/1083 http://ac.els-cdn.com/S0006349516001351/1-s2.0-S0006349516001351-main.pdf?_tid=da62a74e-8d97-11e7-b453-00000aacb361&acdnat=1504107080_124ed9f2ea10addd83bfe98d746c1921 https://doi.org/10.1016/j.bpj.2016.01.026 |
identifier_str_mv |
0006-3495 (Print) 1542-0086 (Online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Biophysical Journal 110 (6) :1312-1321. (March 2016) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341349648498688 |
score |
12.623145 |