Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data
- Autores
- Azzaz, Fodil; Chahinian, Henri; Yahi, Nouara; Di Scala, Coralie; Baier, Carlos J.; Barrantes, Francisco José
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Fil: Azzaz, Fodil. Institut national de la santé et de la recherche médicale; Francia
Fil: Azzaz, Fodil. Aix-Marseille Université; Francia
Fil: Chahinian, Henri. Institut national de la santé et de la recherche médicale; Francia
Fil: Chahinian, Henri. Aix-Marseille Université; Francia
Fil: Yahi, Nouara. Institut national de la santé et de la recherche médicale; Francia
Fil: Yahi, Nouara. Aix-Marseille Université; Francia.
Fil: Di Scala, Coralie. University of Helsinki. Neuroscience Center; Finlandia
Fil: Baier, Carlos J. Universidad Nacional del Sur. Instituto de Ciencias Biológicas y Biomédicas del Sur. Laboratorio de Toxicología; Argentina
Fil: Baier, Carlos J. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina
Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Abstract: Cholesterol binding to proteins is a dynamic process that involves a combination of geometric, biochemical, and biophysical principles. These properties can be viewed as basic rules which govern any kind of molecular interactions. Nevertheless, cholesterol displays unique features that have made cholesterol recognition motifs in proteins remarkably convergent upon biological evolution. Consequently, simple algorithms based on consensus amino acid sequences (e.g., CARC and CRAC) have been developed to predict the presence of such cholesterol-binding motifs in proteins. The intrinsic weakness of this approach is that CARC and CRAC are both based on a linear (1D) sequence motif, whereas cholesterol-binding sites have a three-dimensional (3D) structure. This issue is discussed in detail in this chapter. We then analyze the performance of these algorithms in the light of structural data obtained by X-ray diffraction and cryoelectron microscopy of membrane proteins, and structure-function studies based on site-directed mutagenesis. Our study not only confirms the overall reliability of CARC and CRAC algorithms but also reveals new clues that could bring forth new ideas on cholesterol recognition motifs in the 3D structure of transmembrane proteins. - Fuente
- Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022
- Materia
-
COLESTEROL
AMINOACIDOS
MEMBRANAS CELULARES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/14433
Ver los metadatos del registro completo
id |
RIUCA_586e731b476e1d2311a94e535e3baceb |
---|---|
oai_identifier_str |
oai:ucacris:123456789/14433 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural dataAzzaz, FodilChahinian, HenriYahi, NouaraDi Scala, CoralieBaier, Carlos J.Barrantes, Francisco JoséCOLESTEROLAMINOACIDOSMEMBRANAS CELULARESFil: Azzaz, Fodil. Institut national de la santé et de la recherche médicale; FranciaFil: Azzaz, Fodil. Aix-Marseille Université; FranciaFil: Chahinian, Henri. Institut national de la santé et de la recherche médicale; FranciaFil: Chahinian, Henri. Aix-Marseille Université; FranciaFil: Yahi, Nouara. Institut national de la santé et de la recherche médicale; FranciaFil: Yahi, Nouara. Aix-Marseille Université; Francia.Fil: Di Scala, Coralie. University of Helsinki. Neuroscience Center; FinlandiaFil: Baier, Carlos J. Universidad Nacional del Sur. Instituto de Ciencias Biológicas y Biomédicas del Sur. Laboratorio de Toxicología; ArgentinaFil: Baier, Carlos J. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; ArgentinaFil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAbstract: Cholesterol binding to proteins is a dynamic process that involves a combination of geometric, biochemical, and biophysical principles. These properties can be viewed as basic rules which govern any kind of molecular interactions. Nevertheless, cholesterol displays unique features that have made cholesterol recognition motifs in proteins remarkably convergent upon biological evolution. Consequently, simple algorithms based on consensus amino acid sequences (e.g., CARC and CRAC) have been developed to predict the presence of such cholesterol-binding motifs in proteins. The intrinsic weakness of this approach is that CARC and CRAC are both based on a linear (1D) sequence motif, whereas cholesterol-binding sites have a three-dimensional (3D) structure. This issue is discussed in detail in this chapter. We then analyze the performance of these algorithms in the light of structural data obtained by X-ray diffraction and cryoelectron microscopy of membrane proteins, and structure-function studies based on site-directed mutagenesis. Our study not only confirms the overall reliability of CARC and CRAC algorithms but also reveals new clues that could bring forth new ideas on cholesterol recognition motifs in the 3D structure of transmembrane proteins. Academic Press2022info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/14433978-0-323-85857-110.1016/B978-0-323-85857-1.00004-3Azzaz, F., et al. Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data [en línea]. En: Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022 doi:10.1016/B978-0-323-85857-1.00004-3 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14433Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:58:41Zoai:ucacris:123456789/14433instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:58:41.779Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
title |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
spellingShingle |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data Azzaz, Fodil COLESTEROL AMINOACIDOS MEMBRANAS CELULARES |
title_short |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
title_full |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
title_fullStr |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
title_full_unstemmed |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
title_sort |
Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data |
dc.creator.none.fl_str_mv |
Azzaz, Fodil Chahinian, Henri Yahi, Nouara Di Scala, Coralie Baier, Carlos J. Barrantes, Francisco José |
author |
Azzaz, Fodil |
author_facet |
Azzaz, Fodil Chahinian, Henri Yahi, Nouara Di Scala, Coralie Baier, Carlos J. Barrantes, Francisco José |
author_role |
author |
author2 |
Chahinian, Henri Yahi, Nouara Di Scala, Coralie Baier, Carlos J. Barrantes, Francisco José |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COLESTEROL AMINOACIDOS MEMBRANAS CELULARES |
topic |
COLESTEROL AMINOACIDOS MEMBRANAS CELULARES |
dc.description.none.fl_txt_mv |
Fil: Azzaz, Fodil. Institut national de la santé et de la recherche médicale; Francia Fil: Azzaz, Fodil. Aix-Marseille Université; Francia Fil: Chahinian, Henri. Institut national de la santé et de la recherche médicale; Francia Fil: Chahinian, Henri. Aix-Marseille Université; Francia Fil: Yahi, Nouara. Institut national de la santé et de la recherche médicale; Francia Fil: Yahi, Nouara. Aix-Marseille Université; Francia. Fil: Di Scala, Coralie. University of Helsinki. Neuroscience Center; Finlandia Fil: Baier, Carlos J. Universidad Nacional del Sur. Instituto de Ciencias Biológicas y Biomédicas del Sur. Laboratorio de Toxicología; Argentina Fil: Baier, Carlos J. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Abstract: Cholesterol binding to proteins is a dynamic process that involves a combination of geometric, biochemical, and biophysical principles. These properties can be viewed as basic rules which govern any kind of molecular interactions. Nevertheless, cholesterol displays unique features that have made cholesterol recognition motifs in proteins remarkably convergent upon biological evolution. Consequently, simple algorithms based on consensus amino acid sequences (e.g., CARC and CRAC) have been developed to predict the presence of such cholesterol-binding motifs in proteins. The intrinsic weakness of this approach is that CARC and CRAC are both based on a linear (1D) sequence motif, whereas cholesterol-binding sites have a three-dimensional (3D) structure. This issue is discussed in detail in this chapter. We then analyze the performance of these algorithms in the light of structural data obtained by X-ray diffraction and cryoelectron microscopy of membrane proteins, and structure-function studies based on site-directed mutagenesis. Our study not only confirms the overall reliability of CARC and CRAC algorithms but also reveals new clues that could bring forth new ideas on cholesterol recognition motifs in the 3D structure of transmembrane proteins. |
description |
Fil: Azzaz, Fodil. Institut national de la santé et de la recherche médicale; Francia |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/14433 978-0-323-85857-1 10.1016/B978-0-323-85857-1.00004-3 Azzaz, F., et al. Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data [en línea]. En: Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022 doi:10.1016/B978-0-323-85857-1.00004-3 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14433 |
url |
https://repositorio.uca.edu.ar/handle/123456789/14433 |
identifier_str_mv |
978-0-323-85857-1 10.1016/B978-0-323-85857-1.00004-3 Azzaz, F., et al. Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data [en línea]. En: Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022 doi:10.1016/B978-0-323-85857-1.00004-3 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14433 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press |
publisher.none.fl_str_mv |
Academic Press |
dc.source.none.fl_str_mv |
Bukiya, A.N., Dopico, A.M. (eds.). Cholesterol. From Chemistry and Biophysics to the Clinic. Londres: Academic Press, 2022 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638363201830912 |
score |
13.13397 |