The retinal basis of light aversion in neonatal mice

Autores
Caval Holme, Franklin S.; Aranda, Marcos L.; Chen, Andy Q.; Tiriac, Alexandre; Zhang, Yizhen; Smith, Benjamin; Birnbaumer, Lutz; Schmidt, Tiffany M.; Feller, Marla B.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Caval Holme, Franklin S. University of California Berkeley. Helen Wills Neuroscience Institute; Estados Unidos
Fil: Aranda, Marcos L. Northwestern University. Department of Neurobiology; Estados Unidos
Fil: Chen, Andy Q. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Tiriac, Alexandre. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Zhang, Yizhen. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Smith, Benjamin. University of California Berkeley. School of Optometry; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina; Argentina
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. National Institutes of Health. Signal Transduction Laboratory; Estados Unidos
Fil: Schmidt, Tiffany M. Northwestern University. Department of Neurobiology; Estados Unidos
Fil: Schmidt, Tiffany M. Northwestern University Feinberg School of Medicine. Department of Ophthalmology; Estados Unidos
Fil: Feller, Marla B. University of California Berkeley. Helen Wills Neuroscience Institute; Estados Unidos
Fil: Feller, Marla B. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca21 imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3bnegative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves...
Fuente
The Journal of Neuroscience. Vol.42, No.20, 4101-4115, 2022
Materia
RETINA
DESARROLLO
ENUCLEACION
CORRIENTE FOTOELECTRICA
FOTOFOBIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/17413

id RIUCA_2bcedfe2a2e3ab772a15d79f43a13f6b
oai_identifier_str oai:ucacris:123456789/17413
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling The retinal basis of light aversion in neonatal miceCaval Holme, Franklin S.Aranda, Marcos L.Chen, Andy Q.Tiriac, AlexandreZhang, YizhenSmith, BenjaminBirnbaumer, LutzSchmidt, Tiffany M.Feller, Marla B.RETINADESARROLLOENUCLEACIONCORRIENTE FOTOELECTRICAFOTOFOBIAFil: Caval Holme, Franklin S. University of California Berkeley. Helen Wills Neuroscience Institute; Estados UnidosFil: Aranda, Marcos L. Northwestern University. Department of Neurobiology; Estados UnidosFil: Chen, Andy Q. University of California Berkeley. Department of Molecular and Cell Biology; Estados UnidosFil: Tiriac, Alexandre. University of California Berkeley. Department of Molecular and Cell Biology; Estados UnidosFil: Zhang, Yizhen. University of California Berkeley. Department of Molecular and Cell Biology; Estados UnidosFil: Smith, Benjamin. University of California Berkeley. School of Optometry; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina; ArgentinaFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. National Institutes of Health. Signal Transduction Laboratory; Estados UnidosFil: Schmidt, Tiffany M. Northwestern University. Department of Neurobiology; Estados UnidosFil: Schmidt, Tiffany M. Northwestern University Feinberg School of Medicine. Department of Ophthalmology; Estados UnidosFil: Feller, Marla B. University of California Berkeley. Helen Wills Neuroscience Institute; Estados UnidosFil: Feller, Marla B. University of California Berkeley. Department of Molecular and Cell Biology; Estados UnidosAversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca21 imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3bnegative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves...Society for Neuroscience2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/174130270-6474 (impreso)1529-2401 (online)10.1523/JNEUROSCI.0151-22.202235396331Caval Holme, F. S. The retinal basis of light aversion in neonatal mice [en línea]. The Journal of Neuroscience. 2022, 42(20) 4101-4115. doi: 10.1523/JNEUROSCI.0151-22.2022. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17413The Journal of Neuroscience. Vol.42, No.20, 4101-4115, 2022reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:35Zoai:ucacris:123456789/17413instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:36.05Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv The retinal basis of light aversion in neonatal mice
title The retinal basis of light aversion in neonatal mice
spellingShingle The retinal basis of light aversion in neonatal mice
Caval Holme, Franklin S.
RETINA
DESARROLLO
ENUCLEACION
CORRIENTE FOTOELECTRICA
FOTOFOBIA
title_short The retinal basis of light aversion in neonatal mice
title_full The retinal basis of light aversion in neonatal mice
title_fullStr The retinal basis of light aversion in neonatal mice
title_full_unstemmed The retinal basis of light aversion in neonatal mice
title_sort The retinal basis of light aversion in neonatal mice
dc.creator.none.fl_str_mv Caval Holme, Franklin S.
Aranda, Marcos L.
Chen, Andy Q.
Tiriac, Alexandre
Zhang, Yizhen
Smith, Benjamin
Birnbaumer, Lutz
Schmidt, Tiffany M.
Feller, Marla B.
author Caval Holme, Franklin S.
author_facet Caval Holme, Franklin S.
Aranda, Marcos L.
Chen, Andy Q.
Tiriac, Alexandre
Zhang, Yizhen
Smith, Benjamin
Birnbaumer, Lutz
Schmidt, Tiffany M.
Feller, Marla B.
author_role author
author2 Aranda, Marcos L.
Chen, Andy Q.
Tiriac, Alexandre
Zhang, Yizhen
Smith, Benjamin
Birnbaumer, Lutz
Schmidt, Tiffany M.
Feller, Marla B.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv RETINA
DESARROLLO
ENUCLEACION
CORRIENTE FOTOELECTRICA
FOTOFOBIA
topic RETINA
DESARROLLO
ENUCLEACION
CORRIENTE FOTOELECTRICA
FOTOFOBIA
dc.description.none.fl_txt_mv Fil: Caval Holme, Franklin S. University of California Berkeley. Helen Wills Neuroscience Institute; Estados Unidos
Fil: Aranda, Marcos L. Northwestern University. Department of Neurobiology; Estados Unidos
Fil: Chen, Andy Q. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Tiriac, Alexandre. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Zhang, Yizhen. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Fil: Smith, Benjamin. University of California Berkeley. School of Optometry; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina; Argentina
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. National Institutes of Health. Signal Transduction Laboratory; Estados Unidos
Fil: Schmidt, Tiffany M. Northwestern University. Department of Neurobiology; Estados Unidos
Fil: Schmidt, Tiffany M. Northwestern University Feinberg School of Medicine. Department of Ophthalmology; Estados Unidos
Fil: Feller, Marla B. University of California Berkeley. Helen Wills Neuroscience Institute; Estados Unidos
Fil: Feller, Marla B. University of California Berkeley. Department of Molecular and Cell Biology; Estados Unidos
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca21 imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3bnegative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves...
description Fil: Caval Holme, Franklin S. University of California Berkeley. Helen Wills Neuroscience Institute; Estados Unidos
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/17413
0270-6474 (impreso)
1529-2401 (online)
10.1523/JNEUROSCI.0151-22.2022
35396331
Caval Holme, F. S. The retinal basis of light aversion in neonatal mice [en línea]. The Journal of Neuroscience. 2022, 42(20) 4101-4115. doi: 10.1523/JNEUROSCI.0151-22.2022. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17413
url https://repositorio.uca.edu.ar/handle/123456789/17413
identifier_str_mv 0270-6474 (impreso)
1529-2401 (online)
10.1523/JNEUROSCI.0151-22.2022
35396331
Caval Holme, F. S. The retinal basis of light aversion in neonatal mice [en línea]. The Journal of Neuroscience. 2022, 42(20) 4101-4115. doi: 10.1523/JNEUROSCI.0151-22.2022. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17413
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Society for Neuroscience
publisher.none.fl_str_mv Society for Neuroscience
dc.source.none.fl_str_mv The Journal of Neuroscience. Vol.42, No.20, 4101-4115, 2022
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638371256991744
score 13.22299