Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
- Autores
- Quintero Rincón, Antonio; Chaari, Lotfi; Batatia, Hadj
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina
Fil: Chaari, Lotfi. University of Toulouse
Fil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes Unidos
Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue. - Fuente
- 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022
- Materia
-
CONDUCTOR
INNOVACION TECNOLOGICA
FATIGA
ELECTROENCEFALOGRAFÍA
REDES GENERATIVAS ADVERSARIAS
APRENDIZAJE PROFUNDO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/17073
Ver los metadatos del registro completo
| id |
RIUCA_2b40bbdc699de02a2fcd0df61caa0a06 |
|---|---|
| oai_identifier_str |
oai:ucacris:123456789/17073 |
| network_acronym_str |
RIUCA |
| repository_id_str |
2585 |
| network_name_str |
Repositorio Institucional (UCA) |
| spelling |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signalsQuintero Rincón, AntonioChaari, LotfiBatatia, HadjCONDUCTORINNOVACION TECNOLOGICAFATIGAELECTROENCEFALOGRAFÍAREDES GENERATIVAS ADVERSARIASAPRENDIZAJE PROFUNDOFil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; ArgentinaFil: Chaari, Lotfi. University of ToulouseFil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes UnidosAbstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.Institute of Electrical and Electronics Engineers2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/170732169-353610.1109/ICTIH57289.2022.10111943Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/170732022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica ArgentinaengEstimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:30Zoai:ucacris:123456789/17073instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:30.262Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
| dc.title.none.fl_str_mv |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| title |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| spellingShingle |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals Quintero Rincón, Antonio CONDUCTOR INNOVACION TECNOLOGICA FATIGA ELECTROENCEFALOGRAFÍA REDES GENERATIVAS ADVERSARIAS APRENDIZAJE PROFUNDO |
| title_short |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| title_full |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| title_fullStr |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| title_full_unstemmed |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| title_sort |
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals |
| dc.creator.none.fl_str_mv |
Quintero Rincón, Antonio Chaari, Lotfi Batatia, Hadj |
| author |
Quintero Rincón, Antonio |
| author_facet |
Quintero Rincón, Antonio Chaari, Lotfi Batatia, Hadj |
| author_role |
author |
| author2 |
Chaari, Lotfi Batatia, Hadj |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CONDUCTOR INNOVACION TECNOLOGICA FATIGA ELECTROENCEFALOGRAFÍA REDES GENERATIVAS ADVERSARIAS APRENDIZAJE PROFUNDO |
| topic |
CONDUCTOR INNOVACION TECNOLOGICA FATIGA ELECTROENCEFALOGRAFÍA REDES GENERATIVAS ADVERSARIAS APRENDIZAJE PROFUNDO |
| dc.description.none.fl_txt_mv |
Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina Fil: Chaari, Lotfi. University of Toulouse Fil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes Unidos Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue. |
| description |
Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/17073 2169-3536 10.1109/ICTIH57289.2022.10111943 Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17073 |
| url |
https://repositorio.uca.edu.ar/handle/123456789/17073 |
| identifier_str_mv |
2169-3536 10.1109/ICTIH57289.2022.10111943 Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17073 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Estimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG) |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
| dc.source.none.fl_str_mv |
2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
| reponame_str |
Repositorio Institucional (UCA) |
| collection |
Repositorio Institucional (UCA) |
| instname_str |
Pontificia Universidad Católica Argentina |
| repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
| repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
| _version_ |
1836638370347876352 |
| score |
12.982451 |