Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals

Autores
Quintero Rincón, Antonio; Chaari, Lotfi; Batatia, Hadj
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina
Fil: Chaari, Lotfi. University of Toulouse
Fil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes Unidos
Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.
Fuente
2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022
Materia
CONDUCTOR
INNOVACION TECNOLOGICA
FATIGA
ELECTROENCEFALOGRAFÍA
REDES GENERATIVAS ADVERSARIAS
APRENDIZAJE PROFUNDO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/17073

id RIUCA_2b40bbdc699de02a2fcd0df61caa0a06
oai_identifier_str oai:ucacris:123456789/17073
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signalsQuintero Rincón, AntonioChaari, LotfiBatatia, HadjCONDUCTORINNOVACION TECNOLOGICAFATIGAELECTROENCEFALOGRAFÍAREDES GENERATIVAS ADVERSARIASAPRENDIZAJE PROFUNDOFil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; ArgentinaFil: Chaari, Lotfi. University of ToulouseFil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes UnidosAbstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.Institute of Electrical and Electronics Engineers2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/170732169-353610.1109/ICTIH57289.2022.10111943Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/170732022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica ArgentinaengEstimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:30Zoai:ucacris:123456789/17073instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:30.262Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
title Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
spellingShingle Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
Quintero Rincón, Antonio
CONDUCTOR
INNOVACION TECNOLOGICA
FATIGA
ELECTROENCEFALOGRAFÍA
REDES GENERATIVAS ADVERSARIAS
APRENDIZAJE PROFUNDO
title_short Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
title_full Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
title_fullStr Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
title_full_unstemmed Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
title_sort Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
dc.creator.none.fl_str_mv Quintero Rincón, Antonio
Chaari, Lotfi
Batatia, Hadj
author Quintero Rincón, Antonio
author_facet Quintero Rincón, Antonio
Chaari, Lotfi
Batatia, Hadj
author_role author
author2 Chaari, Lotfi
Batatia, Hadj
author2_role author
author
dc.subject.none.fl_str_mv CONDUCTOR
INNOVACION TECNOLOGICA
FATIGA
ELECTROENCEFALOGRAFÍA
REDES GENERATIVAS ADVERSARIAS
APRENDIZAJE PROFUNDO
topic CONDUCTOR
INNOVACION TECNOLOGICA
FATIGA
ELECTROENCEFALOGRAFÍA
REDES GENERATIVAS ADVERSARIAS
APRENDIZAJE PROFUNDO
dc.description.none.fl_txt_mv Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina
Fil: Chaari, Lotfi. University of Toulouse
Fil: Batatia, Hadj. Heriot-Watt University Dubai; Emiratos Árabes Unidos
Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.
description Fil: Quintero Rincón, Antonio. Pontificia Universidad Católica Argentina. Departamento de Electrónica; Argentina
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/17073
2169-3536
10.1109/ICTIH57289.2022.10111943
Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17073
url https://repositorio.uca.edu.ar/handle/123456789/17073
identifier_str_mv 2169-3536
10.1109/ICTIH57289.2022.10111943
Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17073
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Estimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638370347876352
score 12.982451