Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals

Autores
Quintero-Rincón, Antonio; Muro, Valeria; D’Giano, Carlos; Prendes, Jorge; Batatia, Hadj
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina
Fil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; Francia
Fil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes Unidos
Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings.
Fuente
Computers Vol.9, No.4, 2020
Materia
EPILEPSIA
ELECTROENCEFALOGRAFIA
ONDAS ENCEFALICAS
TECNICAS DE DIAGNOSTICO NEUROLOGICO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/10947

id RIUCA_13bb33cbf3a62ccf6644751f3d6b37b6
oai_identifier_str oai:ucacris:123456789/10947
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG SignalsQuintero-Rincón, AntonioMuro, ValeriaD’Giano, CarlosPrendes, JorgeBatatia, HadjEPILEPSIAELECTROENCEFALOGRAFIAONDAS ENCEFALICASTECNICAS DE DIAGNOSTICO NEUROLOGICOFil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; ArgentinaFil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; FranciaFil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes UnidosAbstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings.MDPI2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/109472073-431X (online)Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947Computers Vol.9, No.4, 2020reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:37Zoai:ucacris:123456789/10947instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:37.478Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
title Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
spellingShingle Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
Quintero-Rincón, Antonio
EPILEPSIA
ELECTROENCEFALOGRAFIA
ONDAS ENCEFALICAS
TECNICAS DE DIAGNOSTICO NEUROLOGICO
title_short Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
title_full Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
title_fullStr Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
title_full_unstemmed Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
title_sort Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
dc.creator.none.fl_str_mv Quintero-Rincón, Antonio
Muro, Valeria
D’Giano, Carlos
Prendes, Jorge
Batatia, Hadj
author Quintero-Rincón, Antonio
author_facet Quintero-Rincón, Antonio
Muro, Valeria
D’Giano, Carlos
Prendes, Jorge
Batatia, Hadj
author_role author
author2 Muro, Valeria
D’Giano, Carlos
Prendes, Jorge
Batatia, Hadj
author2_role author
author
author
author
dc.subject.none.fl_str_mv EPILEPSIA
ELECTROENCEFALOGRAFIA
ONDAS ENCEFALICAS
TECNICAS DE DIAGNOSTICO NEUROLOGICO
topic EPILEPSIA
ELECTROENCEFALOGRAFIA
ONDAS ENCEFALICAS
TECNICAS DE DIAGNOSTICO NEUROLOGICO
dc.description.none.fl_txt_mv Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina
Fil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; Francia
Fil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes Unidos
Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings.
description Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/10947
2073-431X (online)
Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947
url https://repositorio.uca.edu.ar/handle/123456789/10947
identifier_str_mv 2073-431X (online)
Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Computers Vol.9, No.4, 2020
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638353829658624
score 13.070432