Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
- Autores
- Quintero-Rincón, Antonio; Muro, Valeria; D’Giano, Carlos; Prendes, Jorge; Batatia, Hadj
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina
Fil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina
Fil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; Francia
Fil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes Unidos
Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings. - Fuente
- Computers Vol.9, No.4, 2020
- Materia
-
EPILEPSIA
ELECTROENCEFALOGRAFIA
ONDAS ENCEFALICAS
TECNICAS DE DIAGNOSTICO NEUROLOGICO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/10947
Ver los metadatos del registro completo
id |
RIUCA_13bb33cbf3a62ccf6644751f3d6b37b6 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/10947 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG SignalsQuintero-Rincón, AntonioMuro, ValeriaD’Giano, CarlosPrendes, JorgeBatatia, HadjEPILEPSIAELECTROENCEFALOGRAFIAONDAS ENCEFALICASTECNICAS DE DIAGNOSTICO NEUROLOGICOFil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; ArgentinaFil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; ArgentinaFil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; FranciaFil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes UnidosAbstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings.MDPI2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/109472073-431X (online)Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947Computers Vol.9, No.4, 2020reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:37Zoai:ucacris:123456789/10947instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:37.478Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
title |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
spellingShingle |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals Quintero-Rincón, Antonio EPILEPSIA ELECTROENCEFALOGRAFIA ONDAS ENCEFALICAS TECNICAS DE DIAGNOSTICO NEUROLOGICO |
title_short |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
title_full |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
title_fullStr |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
title_full_unstemmed |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
title_sort |
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals |
dc.creator.none.fl_str_mv |
Quintero-Rincón, Antonio Muro, Valeria D’Giano, Carlos Prendes, Jorge Batatia, Hadj |
author |
Quintero-Rincón, Antonio |
author_facet |
Quintero-Rincón, Antonio Muro, Valeria D’Giano, Carlos Prendes, Jorge Batatia, Hadj |
author_role |
author |
author2 |
Muro, Valeria D’Giano, Carlos Prendes, Jorge Batatia, Hadj |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
EPILEPSIA ELECTROENCEFALOGRAFIA ONDAS ENCEFALICAS TECNICAS DE DIAGNOSTICO NEUROLOGICO |
topic |
EPILEPSIA ELECTROENCEFALOGRAFIA ONDAS ENCEFALICAS TECNICAS DE DIAGNOSTICO NEUROLOGICO |
dc.description.none.fl_txt_mv |
Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina Fil: Quintero-Rincón, Antonio. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina Fil: Muro, Valeria. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina Fil: D’Giano, Carlos. Fleni. Fundación para la Lucha contra la Enfermedad Neurológica Pediátrica; Argentina Fil: Prendes, Jorge. Université Toulouse. Institut de Recherche en Informatique; Francia Fil: Batatia, Hadj. Universidad Heriot-Watt de Dubái; Emiratos Árabes Unidos Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings. |
description |
Fil: Quintero-Rincón, Antonio. Pontificia Universidad Católica Argentina; Argentina |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/10947 2073-431X (online) Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947 |
url |
https://repositorio.uca.edu.ar/handle/123456789/10947 |
identifier_str_mv |
2073-431X (online) Quintero-Rincón, A., Muro, V., D’Giano, C., Prendes, J., Batatia, H. Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals [en línea]. 2020, Computers, 9 (4). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10947 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Computers Vol.9, No.4, 2020 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638353829658624 |
score |
13.070432 |