Clasificación Automática de Textos Periodísticos Usando SVM
- Autores
- Izetta, Javier; Salinas, Juan
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión enviada
- Descripción
- El objetivo de la categorización automática de textos (CAT) es asignar una categoría a documentos dentro de un conjunto de categorías predefinidas en función de su contenido. Es considerada una de las tareas de gran interés en la comunidad científica. En los últimos años el periodismo regional, al igual que en todas partes del mundo, pasó de su formato clásico de publicación al electrónico. Así las webs de noticias regionales también se ven obligadas a evolucionar y mejorar sus prestaciones a través de una mejor organización y categorización previa de toda la información disponible para el lector. En este trabajo se propone abordar la clasificación automática de textos periodísticos digitales a través del Aprendizaje Automatizado. Se presentan dos clasificadores automáticos de textos periodísticos extraídos de páginas webs de noticias del NOA basados en Support Vector Machine junto con dos técnicas para la reducción de dimensionalidad del espacio de características. Estos clasificadores fueron evaluados con distintas colecciones de noticias demostrando un buen desempeño.
Fil: Salinas, Juan. Universidad Católica de Salta. Facultad de Ingeniería; Argentina.
Fil: Izetta, Javier. Universidad Católica de Salta. Facultad de Ingeniería; Argentina. - Materia
-
Redacción periodística
Análisis automático de textos
Informática
Periodismo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Católica de Salta
- OAI Identificador
- oai:bibliotecas.ucasal.edu.ar:61344
Ver los metadatos del registro completo
id |
RIUCASAL_6ed9b7c36284f900a367bed93fd69e8e |
---|---|
oai_identifier_str |
oai:bibliotecas.ucasal.edu.ar:61344 |
network_acronym_str |
RIUCASAL |
repository_id_str |
3930 |
network_name_str |
Repositorio Institucional (UCaSal) |
spelling |
Clasificación Automática de Textos Periodísticos Usando SVMIzetta, JavierSalinas, JuanRedacción periodísticaAnálisis automático de textosInformáticaPeriodismoEl objetivo de la categorización automática de textos (CAT) es asignar una categoría a documentos dentro de un conjunto de categorías predefinidas en función de su contenido. Es considerada una de las tareas de gran interés en la comunidad científica. En los últimos años el periodismo regional, al igual que en todas partes del mundo, pasó de su formato clásico de publicación al electrónico. Así las webs de noticias regionales también se ven obligadas a evolucionar y mejorar sus prestaciones a través de una mejor organización y categorización previa de toda la información disponible para el lector. En este trabajo se propone abordar la clasificación automática de textos periodísticos digitales a través del Aprendizaje Automatizado. Se presentan dos clasificadores automáticos de textos periodísticos extraídos de páginas webs de noticias del NOA basados en Support Vector Machine junto con dos técnicas para la reducción de dimensionalidad del espacio de características. Estos clasificadores fueron evaluados con distintas colecciones de noticias demostrando un buen desempeño.Fil: Salinas, Juan. Universidad Católica de Salta. Facultad de Ingeniería; Argentina.Fil: Izetta, Javier. Universidad Católica de Salta. Facultad de Ingeniería; Argentina.Universidad Católica de Salta. Facultad de Ingeniería (Salta)Congreso Nacional de Ingeniería en Informática / Sistemas de información (4° : 2016 nov. 17-18 : Salta)2016-12-30info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://bibliotecas.ucasal.edu.ar/opac_css/index.php?lvl=cmspage&pageid=24&id_notice=613446134420170516u u u0frey0103 baspa1001514Salta (province)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Atribución/Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)reponame:Repositorio Institucional (UCaSal)instname:Universidad Católica de Saltainstacron:UCaSal2025-09-04T11:15:02Zoai:bibliotecas.ucasal.edu.ar:61344Institucionalhttp://bibliotecas.ucasal.edu.ar/opac_css/index.php?lvl=cmspage&pageid=16Universidad privadaNo correspondehttp://bibliotecas.ucasal.edu.ar/ws/oai2_7?verb=Identifycdiedrich@ucasal.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:39302025-09-04 11:15:02.542Repositorio Institucional (UCaSal) - Universidad Católica de Saltafalse |
dc.title.none.fl_str_mv |
Clasificación Automática de Textos Periodísticos Usando SVM |
title |
Clasificación Automática de Textos Periodísticos Usando SVM |
spellingShingle |
Clasificación Automática de Textos Periodísticos Usando SVM Izetta, Javier Redacción periodística Análisis automático de textos Informática Periodismo |
title_short |
Clasificación Automática de Textos Periodísticos Usando SVM |
title_full |
Clasificación Automática de Textos Periodísticos Usando SVM |
title_fullStr |
Clasificación Automática de Textos Periodísticos Usando SVM |
title_full_unstemmed |
Clasificación Automática de Textos Periodísticos Usando SVM |
title_sort |
Clasificación Automática de Textos Periodísticos Usando SVM |
dc.creator.none.fl_str_mv |
Izetta, Javier Salinas, Juan |
author |
Izetta, Javier |
author_facet |
Izetta, Javier Salinas, Juan |
author_role |
author |
author2 |
Salinas, Juan |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Congreso Nacional de Ingeniería en Informática / Sistemas de información (4° : 2016 nov. 17-18 : Salta) |
dc.subject.none.fl_str_mv |
Redacción periodística Análisis automático de textos Informática Periodismo |
topic |
Redacción periodística Análisis automático de textos Informática Periodismo |
dc.description.none.fl_txt_mv |
El objetivo de la categorización automática de textos (CAT) es asignar una categoría a documentos dentro de un conjunto de categorías predefinidas en función de su contenido. Es considerada una de las tareas de gran interés en la comunidad científica. En los últimos años el periodismo regional, al igual que en todas partes del mundo, pasó de su formato clásico de publicación al electrónico. Así las webs de noticias regionales también se ven obligadas a evolucionar y mejorar sus prestaciones a través de una mejor organización y categorización previa de toda la información disponible para el lector. En este trabajo se propone abordar la clasificación automática de textos periodísticos digitales a través del Aprendizaje Automatizado. Se presentan dos clasificadores automáticos de textos periodísticos extraídos de páginas webs de noticias del NOA basados en Support Vector Machine junto con dos técnicas para la reducción de dimensionalidad del espacio de características. Estos clasificadores fueron evaluados con distintas colecciones de noticias demostrando un buen desempeño. Fil: Salinas, Juan. Universidad Católica de Salta. Facultad de Ingeniería; Argentina. Fil: Izetta, Javier. Universidad Católica de Salta. Facultad de Ingeniería; Argentina. |
description |
El objetivo de la categorización automática de textos (CAT) es asignar una categoría a documentos dentro de un conjunto de categorías predefinidas en función de su contenido. Es considerada una de las tareas de gran interés en la comunidad científica. En los últimos años el periodismo regional, al igual que en todas partes del mundo, pasó de su formato clásico de publicación al electrónico. Así las webs de noticias regionales también se ven obligadas a evolucionar y mejorar sus prestaciones a través de una mejor organización y categorización previa de toda la información disponible para el lector. En este trabajo se propone abordar la clasificación automática de textos periodísticos digitales a través del Aprendizaje Automatizado. Se presentan dos clasificadores automáticos de textos periodísticos extraídos de páginas webs de noticias del NOA basados en Support Vector Machine junto con dos técnicas para la reducción de dimensionalidad del espacio de características. Estos clasificadores fueron evaluados con distintas colecciones de noticias demostrando un buen desempeño. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://bibliotecas.ucasal.edu.ar/opac_css/index.php?lvl=cmspage&pageid=24&id_notice=61344 61344 20170516u u u0frey0103 ba |
url |
https://bibliotecas.ucasal.edu.ar/opac_css/index.php?lvl=cmspage&pageid=24&id_notice=61344 |
identifier_str_mv |
61344 20170516u u u0frey0103 ba |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Atribución/Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Atribución/Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
1001514 Salta (province) |
dc.publisher.none.fl_str_mv |
Universidad Católica de Salta. Facultad de Ingeniería (Salta) |
publisher.none.fl_str_mv |
Universidad Católica de Salta. Facultad de Ingeniería (Salta) |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional (UCaSal) instname:Universidad Católica de Salta instacron:UCaSal |
reponame_str |
Repositorio Institucional (UCaSal) |
collection |
Repositorio Institucional (UCaSal) |
instname_str |
Universidad Católica de Salta |
instacron_str |
UCaSal |
institution |
UCaSal |
repository.name.fl_str_mv |
Repositorio Institucional (UCaSal) - Universidad Católica de Salta |
repository.mail.fl_str_mv |
cdiedrich@ucasal.edu.ar |
_version_ |
1842344396826083328 |
score |
12.623145 |