Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430

Autores
Simoncelli, A.; Buglioni, L.; Martínez Krahmer, D.; Sánchez Egea, A. J.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Single Point Incremental Forming (SPIF) is a versatile process for producing small batches or custom components in precisiondemanding industries. This dieless metal forming technique utilizes a hemispherical-tipped tool that follows a controlled trajectory. While SPIF offers flexibility and high formability, challenges related to geometric accuracy and springback persist. This study investigates the impact of machine compliance on geometric accuracy and forming forces during stainless steel SPIF using both a CNC machine and a robot, combining experimental tests and FEM analysis. The results reveal that the CNC machine is approximately 2.5×, 4×, and 11× stiffer than the robot in the X, Y, and Z directions, respectively. CNCformed parts demonstrated lower wall angle deviations (e.g., 0.02–0.05° vs. 0.14–0.18° for the robot) and smaller springback distortions in truncated cones. Conversely, the robot achieved 45.6% lower surface roughness (e.g., 0.72–1.14 µm vs. 1.41– 1.86 µm for CNC) across all geometries. Regarding forming forces, CNC exhibited 15–24% higher in-plane forces but 2–20% lower Z-forces compared to the robot, with total forces remaining similar (difference below 3%). Finite element simulations corroborated these trends but underestimated lateral forces due to shell-element limitations. These findings highlight the trade-offs between stiffness, accuracy, and surface quality, providing actionable insights for selecting SPIF systems based on application priorities.
Fil: Simoncelli, A. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; Argentina
Fil: Simoncelli, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); España
Fil: Buglioni, L. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; Argentina
Fil: Martínez Krahmer, D. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Servicios Industriales. Subgerencia Operativa de Mecánica y Logística. Dirección Técnica de Procesos Industriales. Departamento de Procesos de Mecanizado y Conformado (INTI-GOSI-SOMyL); Argentina
Fil: Sánchez Egea, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); España
Fuente
The International Journal of Advanced Manufacturing Technology, 2025
Materia
Automatización
Rigidez
Conformado
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
Institución
Instituto Nacional de Tecnología Industrial
OAI Identificador
nuevadc:2025SimoncelliA1_pdf

id RIINTI_f3f0a6a81fdaaad1203db745c6162330
oai_identifier_str nuevadc:2025SimoncelliA1_pdf
network_acronym_str RIINTI
repository_id_str
network_name_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
spelling Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430Simoncelli, A.Buglioni, L.Martínez Krahmer, D.Sánchez Egea, A. J.AutomatizaciónRigidezConformadoSingle Point Incremental Forming (SPIF) is a versatile process for producing small batches or custom components in precisiondemanding industries. This dieless metal forming technique utilizes a hemispherical-tipped tool that follows a controlled trajectory. While SPIF offers flexibility and high formability, challenges related to geometric accuracy and springback persist. This study investigates the impact of machine compliance on geometric accuracy and forming forces during stainless steel SPIF using both a CNC machine and a robot, combining experimental tests and FEM analysis. The results reveal that the CNC machine is approximately 2.5×, 4×, and 11× stiffer than the robot in the X, Y, and Z directions, respectively. CNCformed parts demonstrated lower wall angle deviations (e.g., 0.02–0.05° vs. 0.14–0.18° for the robot) and smaller springback distortions in truncated cones. Conversely, the robot achieved 45.6% lower surface roughness (e.g., 0.72–1.14 µm vs. 1.41– 1.86 µm for CNC) across all geometries. Regarding forming forces, CNC exhibited 15–24% higher in-plane forces but 2–20% lower Z-forces compared to the robot, with total forces remaining similar (difference below 3%). Finite element simulations corroborated these trends but underestimated lateral forces due to shell-element limitations. These findings highlight the trade-offs between stiffness, accuracy, and surface quality, providing actionable insights for selecting SPIF systems based on application priorities.Fil: Simoncelli, A. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; ArgentinaFil: Simoncelli, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); EspañaFil: Buglioni, L. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; ArgentinaFil: Martínez Krahmer, D. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Servicios Industriales. Subgerencia Operativa de Mecánica y Logística. Dirección Técnica de Procesos Industriales. Departamento de Procesos de Mecanizado y Conformado (INTI-GOSI-SOMyL); ArgentinaFil: Sánchez Egea, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); EspañaSpringer2025info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025SimoncelliA1.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Simo/ncelliA1.dir/doc.pdfThe International Journal of Advanced Manufacturing Technology, 2025reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-11-27T10:59:59Znuevadc:2025SimoncelliA1_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-11-27 11:00:00.57Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse
dc.title.none.fl_str_mv Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
title Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
spellingShingle Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
Simoncelli, A.
Automatización
Rigidez
Conformado
title_short Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
title_full Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
title_fullStr Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
title_full_unstemmed Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
title_sort Effects of machine compliance on forming accuracy and forces in SPIF of AISI 430
dc.creator.none.fl_str_mv Simoncelli, A.
Buglioni, L.
Martínez Krahmer, D.
Sánchez Egea, A. J.
author Simoncelli, A.
author_facet Simoncelli, A.
Buglioni, L.
Martínez Krahmer, D.
Sánchez Egea, A. J.
author_role author
author2 Buglioni, L.
Martínez Krahmer, D.
Sánchez Egea, A. J.
author2_role author
author
author
dc.subject.none.fl_str_mv Automatización
Rigidez
Conformado
topic Automatización
Rigidez
Conformado
dc.description.none.fl_txt_mv Single Point Incremental Forming (SPIF) is a versatile process for producing small batches or custom components in precisiondemanding industries. This dieless metal forming technique utilizes a hemispherical-tipped tool that follows a controlled trajectory. While SPIF offers flexibility and high formability, challenges related to geometric accuracy and springback persist. This study investigates the impact of machine compliance on geometric accuracy and forming forces during stainless steel SPIF using both a CNC machine and a robot, combining experimental tests and FEM analysis. The results reveal that the CNC machine is approximately 2.5×, 4×, and 11× stiffer than the robot in the X, Y, and Z directions, respectively. CNCformed parts demonstrated lower wall angle deviations (e.g., 0.02–0.05° vs. 0.14–0.18° for the robot) and smaller springback distortions in truncated cones. Conversely, the robot achieved 45.6% lower surface roughness (e.g., 0.72–1.14 µm vs. 1.41– 1.86 µm for CNC) across all geometries. Regarding forming forces, CNC exhibited 15–24% higher in-plane forces but 2–20% lower Z-forces compared to the robot, with total forces remaining similar (difference below 3%). Finite element simulations corroborated these trends but underestimated lateral forces due to shell-element limitations. These findings highlight the trade-offs between stiffness, accuracy, and surface quality, providing actionable insights for selecting SPIF systems based on application priorities.
Fil: Simoncelli, A. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; Argentina
Fil: Simoncelli, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); España
Fil: Buglioni, L. Instituto Nacional de Tecnología Industrial. INTI-Mecánica; Argentina
Fil: Martínez Krahmer, D. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Servicios Industriales. Subgerencia Operativa de Mecánica y Logística. Dirección Técnica de Procesos Industriales. Departamento de Procesos de Mecanizado y Conformado (INTI-GOSI-SOMyL); Argentina
Fil: Sánchez Egea, A. Universitat Politècnica de Catalunya. Departament d’Enginyeria Mecánica (UPC); España
description Single Point Incremental Forming (SPIF) is a versatile process for producing small batches or custom components in precisiondemanding industries. This dieless metal forming technique utilizes a hemispherical-tipped tool that follows a controlled trajectory. While SPIF offers flexibility and high formability, challenges related to geometric accuracy and springback persist. This study investigates the impact of machine compliance on geometric accuracy and forming forces during stainless steel SPIF using both a CNC machine and a robot, combining experimental tests and FEM analysis. The results reveal that the CNC machine is approximately 2.5×, 4×, and 11× stiffer than the robot in the X, Y, and Z directions, respectively. CNCformed parts demonstrated lower wall angle deviations (e.g., 0.02–0.05° vs. 0.14–0.18° for the robot) and smaller springback distortions in truncated cones. Conversely, the robot achieved 45.6% lower surface roughness (e.g., 0.72–1.14 µm vs. 1.41– 1.86 µm for CNC) across all geometries. Regarding forming forces, CNC exhibited 15–24% higher in-plane forces but 2–20% lower Z-forces compared to the robot, with total forces remaining similar (difference below 3%). Finite element simulations corroborated these trends but underestimated lateral forces due to shell-element limitations. These findings highlight the trade-offs between stiffness, accuracy, and surface quality, providing actionable insights for selecting SPIF systems based on application priorities.
publishDate 2025
dc.date.none.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 2025SimoncelliA1.pdf
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Simo/ncelliA1.dir/doc.pdf
identifier_str_mv 2025SimoncelliA1.pdf
url https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Simo/ncelliA1.dir/doc.pdf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv The International Journal of Advanced Manufacturing Technology, 2025
reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname:Instituto Nacional de Tecnología Industrial
reponame_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
collection Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname_str Instituto Nacional de Tecnología Industrial
repository.name.fl_str_mv Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial
repository.mail.fl_str_mv pfalcato@inti.gob.ar
_version_ 1849953135676620800
score 12.913667