Stability of equilibrium and bifurcation analysis in delay differential equations
- Autores
- Itovich, Griselda Rut; Gentile, Franco Sebastián; Moiola, Jorge Luis
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión aceptada
- Descripción
- Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina.
Fil: Gentile, Franco Sebastián. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires, Argentina.
Fil: Gentile, Franco Sebastián. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
When delay differential equations are considered, the determination of the stability of an equilibrium is connected with the location of the roots of an exponential polynomial. Applying some results of Pontryagin (1955), Danskin, Bellman and Cooke (1954, 1963), some theorems have been set. They give necessary and sufficient conditions to guarantee the asymptotic stability of the equilibrium points. The models are written as retarded and neutral delay differential equations. So, these results, expressed as inequalities in terms of the involved parameters, allow to find areas of stability as well as its frontiers: the Hopf bifurcation curves. These results together with those coming from the frequency domain methodology (Moiola and Chen, 1996), this last to study limit cycles and its bifurcations, complete the description of the dynamic behavior. - Materia
-
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Delay Differential Equations
Stability
Bifurcation
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/6064
Ver los metadatos del registro completo
id |
RIDUNRN_d16fd0f0bc3ad8f929da4bb0a0ae389c |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/6064 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
Stability of equilibrium and bifurcation analysis in delay differential equationsItovich, Griselda RutGentile, Franco SebastiánMoiola, Jorge LuisCiencias Exactas y NaturalesIngeniería, Ciencia y TecnologíaDelay Differential EquationsStabilityBifurcationCiencias Exactas y NaturalesIngeniería, Ciencia y TecnologíaFil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina.Fil: Gentile, Franco Sebastián. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires, Argentina.Fil: Gentile, Franco Sebastián. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.When delay differential equations are considered, the determination of the stability of an equilibrium is connected with the location of the roots of an exponential polynomial. Applying some results of Pontryagin (1955), Danskin, Bellman and Cooke (1954, 1963), some theorems have been set. They give necessary and sufficient conditions to guarantee the asymptotic stability of the equilibrium points. The models are written as retarded and neutral delay differential equations. So, these results, expressed as inequalities in terms of the involved parameters, allow to find areas of stability as well as its frontiers: the Hopf bifurcation curves. These results together with those coming from the frequency domain methodology (Moiola and Chen, 1996), this last to study limit cycles and its bifurcations, complete the description of the dynamic behavior.2019-06-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttps://www.matematica.uns.edu.ar/xvcm/comunicaciones/Aplicada/Itovich_presentacion_Monteiro_Junio_2019.pdfhttp://rid.unrn.edu.ar/handle/20.500.12049/6064engXV Congreso Dr. Antonio Monteirohttps://www.matematica.uns.edu.ar/xvcm/Comunic.phpinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-11T10:49:25Zoai:rid.unrn.edu.ar:20.500.12049/6064instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-11 10:49:25.279RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
Stability of equilibrium and bifurcation analysis in delay differential equations |
title |
Stability of equilibrium and bifurcation analysis in delay differential equations |
spellingShingle |
Stability of equilibrium and bifurcation analysis in delay differential equations Itovich, Griselda Rut Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología Delay Differential Equations Stability Bifurcation Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología |
title_short |
Stability of equilibrium and bifurcation analysis in delay differential equations |
title_full |
Stability of equilibrium and bifurcation analysis in delay differential equations |
title_fullStr |
Stability of equilibrium and bifurcation analysis in delay differential equations |
title_full_unstemmed |
Stability of equilibrium and bifurcation analysis in delay differential equations |
title_sort |
Stability of equilibrium and bifurcation analysis in delay differential equations |
dc.creator.none.fl_str_mv |
Itovich, Griselda Rut Gentile, Franco Sebastián Moiola, Jorge Luis |
author |
Itovich, Griselda Rut |
author_facet |
Itovich, Griselda Rut Gentile, Franco Sebastián Moiola, Jorge Luis |
author_role |
author |
author2 |
Gentile, Franco Sebastián Moiola, Jorge Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología Delay Differential Equations Stability Bifurcation Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología |
topic |
Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología Delay Differential Equations Stability Bifurcation Ciencias Exactas y Naturales Ingeniería, Ciencia y Tecnología |
dc.description.none.fl_txt_mv |
Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina. Fil: Gentile, Franco Sebastián. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires, Argentina. Fil: Gentile, Franco Sebastián. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina. Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina. Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina. When delay differential equations are considered, the determination of the stability of an equilibrium is connected with the location of the roots of an exponential polynomial. Applying some results of Pontryagin (1955), Danskin, Bellman and Cooke (1954, 1963), some theorems have been set. They give necessary and sufficient conditions to guarantee the asymptotic stability of the equilibrium points. The models are written as retarded and neutral delay differential equations. So, these results, expressed as inequalities in terms of the involved parameters, allow to find areas of stability as well as its frontiers: the Hopf bifurcation curves. These results together with those coming from the frequency domain methodology (Moiola and Chen, 1996), this last to study limit cycles and its bifurcations, complete the description of the dynamic behavior. |
description |
Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
https://www.matematica.uns.edu.ar/xvcm/comunicaciones/Aplicada/Itovich_presentacion_Monteiro_Junio_2019.pdf http://rid.unrn.edu.ar/handle/20.500.12049/6064 |
url |
https://www.matematica.uns.edu.ar/xvcm/comunicaciones/Aplicada/Itovich_presentacion_Monteiro_Junio_2019.pdf http://rid.unrn.edu.ar/handle/20.500.12049/6064 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
XV Congreso Dr. Antonio Monteiro https://www.matematica.uns.edu.ar/xvcm/Comunic.php |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1842976466758795264 |
score |
12.993085 |