Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method

Autores
Itovich, Griselda Rut; Gentile, Franco Sebastian; Moiola, Jorge Luis
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión aceptada
Descripción
Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro. Argentina
Fil: Gentile, Franco Sebastian. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires. Argentina.
Fil: Gentile, Franco Sebastian. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency-domain method. It is considered a second order differential equation with one delay and a quadratic nonlinearity, which includes three additional parameters. This model exhibits two equilibrium points, whose stability was analyzed completely. Besides, some particular parameter configurations were found where some different resonant double Hopf bifurcations take place, in particular of type 1:2. It is known that in a neighborhood of this singularity, limit cycles with frequency ω or 2ω appear singly but also simultaneously. Moreover, the existence of period doubling bifurcations of cycles is frequent in the described context. Related with harmonic balance methods and dynamic systems control, the frequency domain methodology allows, via the graphical Hopf bifurcation theorem, the detection of Hopf bifurcations and the attainment of approximate expressions for the rising of periodic solutions. Thus, different dynamic features were analyzed in the unfolding of this singularity like: the number of existing limit cycles associated to one or other frequency as well as the cycles stability over the Hopf bifurcations curves. Also, saddle-node, period-doubling and torus (or Neimark-Sacker) bifurcations of cycles were detected and their associated curves were obtained in some parameter plane. These results were established starting from fourth order harmonic balance approximations of the periodic solutions, coming through the selected methodology. Then, one Tchebyschev collocation method is applied to build a finite approximation of the monodromy operator and finally the relevants Floquet multipliers were computed. All the achieved results were checked with those coming from well-known softwares for delay differential equations, showing the local effectiveness of the used method.
Materia
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Delay Differential Equations
Stability
Bifurcation
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/6083

id RIDUNRN_a7b191735fb3fd5702d2286629ec777b
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/6083
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency methodItovich, Griselda RutGentile, Franco SebastianMoiola, Jorge LuisCiencias Exactas y NaturalesIngeniería, Ciencia y TecnologíaDelay Differential EquationsStabilityBifurcationCiencias Exactas y NaturalesIngeniería, Ciencia y TecnologíaFil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro. ArgentinaFil: Gentile, Franco Sebastian. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires. Argentina.Fil: Gentile, Franco Sebastian. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency-domain method. It is considered a second order differential equation with one delay and a quadratic nonlinearity, which includes three additional parameters. This model exhibits two equilibrium points, whose stability was analyzed completely. Besides, some particular parameter configurations were found where some different resonant double Hopf bifurcations take place, in particular of type 1:2. It is known that in a neighborhood of this singularity, limit cycles with frequency ω or 2ω appear singly but also simultaneously. Moreover, the existence of period doubling bifurcations of cycles is frequent in the described context. Related with harmonic balance methods and dynamic systems control, the frequency domain methodology allows, via the graphical Hopf bifurcation theorem, the detection of Hopf bifurcations and the attainment of approximate expressions for the rising of periodic solutions. Thus, different dynamic features were analyzed in the unfolding of this singularity like: the number of existing limit cycles associated to one or other frequency as well as the cycles stability over the Hopf bifurcations curves. Also, saddle-node, period-doubling and torus (or Neimark-Sacker) bifurcations of cycles were detected and their associated curves were obtained in some parameter plane. These results were established starting from fourth order harmonic balance approximations of the periodic solutions, coming through the selected methodology. Then, one Tchebyschev collocation method is applied to build a finite approximation of the monodromy operator and finally the relevants Floquet multipliers were computed. All the achieved results were checked with those coming from well-known softwares for delay differential equations, showing the local effectiveness of the used method.2018-08-01info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://icm2018.impa.br/portal/proceedings.htmlhttp://rid.unrn.edu.ar/handle/20.500.12049/6083engInternational Congress of Mathematicians - ICM2018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:28Zoai:rid.unrn.edu.ar:20.500.12049/6083instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:28.485RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
title Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
spellingShingle Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
Itovich, Griselda Rut
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Delay Differential Equations
Stability
Bifurcation
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
title_short Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
title_full Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
title_fullStr Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
title_full_unstemmed Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
title_sort Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency method
dc.creator.none.fl_str_mv Itovich, Griselda Rut
Gentile, Franco Sebastian
Moiola, Jorge Luis
author Itovich, Griselda Rut
author_facet Itovich, Griselda Rut
Gentile, Franco Sebastian
Moiola, Jorge Luis
author_role author
author2 Gentile, Franco Sebastian
Moiola, Jorge Luis
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Delay Differential Equations
Stability
Bifurcation
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
topic Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
Delay Differential Equations
Stability
Bifurcation
Ciencias Exactas y Naturales
Ingeniería, Ciencia y Tecnología
dc.description.none.fl_txt_mv Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro. Argentina
Fil: Gentile, Franco Sebastian. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires. Argentina.
Fil: Gentile, Franco Sebastian. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.
Fil: Moiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.
Dynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency-domain method. It is considered a second order differential equation with one delay and a quadratic nonlinearity, which includes three additional parameters. This model exhibits two equilibrium points, whose stability was analyzed completely. Besides, some particular parameter configurations were found where some different resonant double Hopf bifurcations take place, in particular of type 1:2. It is known that in a neighborhood of this singularity, limit cycles with frequency ω or 2ω appear singly but also simultaneously. Moreover, the existence of period doubling bifurcations of cycles is frequent in the described context. Related with harmonic balance methods and dynamic systems control, the frequency domain methodology allows, via the graphical Hopf bifurcation theorem, the detection of Hopf bifurcations and the attainment of approximate expressions for the rising of periodic solutions. Thus, different dynamic features were analyzed in the unfolding of this singularity like: the number of existing limit cycles associated to one or other frequency as well as the cycles stability over the Hopf bifurcations curves. Also, saddle-node, period-doubling and torus (or Neimark-Sacker) bifurcations of cycles were detected and their associated curves were obtained in some parameter plane. These results were established starting from fourth order harmonic balance approximations of the periodic solutions, coming through the selected methodology. Then, one Tchebyschev collocation method is applied to build a finite approximation of the monodromy operator and finally the relevants Floquet multipliers were computed. All the achieved results were checked with those coming from well-known softwares for delay differential equations, showing the local effectiveness of the used method.
description Fil: Itovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro. Argentina
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://icm2018.impa.br/portal/proceedings.html
http://rid.unrn.edu.ar/handle/20.500.12049/6083
url https://icm2018.impa.br/portal/proceedings.html
http://rid.unrn.edu.ar/handle/20.500.12049/6083
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Congress of Mathematicians - ICM2018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1844621625063899136
score 12.559606