Determining Mammalian Cells State by Fractal

Autores
Acerbo, Esteban; Bellotti, Mariela Ines; Bonetto, Fabian
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión aceptada
Descripción
Fil: Acerbo, Esteban. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Técnologicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, Argentina
Fil: Bellotti, Mariela Ines. Universidad Nacional de Río Negro. Sede Andina. Carrera de Medicina. Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche. Laboratorio de Cavitación y Biotecnología. Argentina
Fil: Bonetto, Fabian. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Tecnológicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, Argentina
In this work we analyzed the evolution of the experimental impedance signal of normal MDCK type II cell cultures as a geometric structure by estimating its fractal dimension. Also, by means of two independent experiments we tested if the fractal dimension is a characteristic value of the cellular state and complementary to the spectral electrical impedance. Fractals are defined as structures composed of smaller parts that resemble the whole [1]. Culture impedance signal evolution in time presents this behavior when sampled rapidly as shown in Fig.1, where the electrical resistance evolution of a confluent MDCK monolayer is plotted. These rapid fluctuations are associated with the cell micromotion over the electrode [2]. As the fractal behavior is present, its fractal dimension can be estimated by different algorithms, resulting in a number in the range [1,2]. One indicates a flat line and two indicates white noise influence. These cultures were monitored using the ECIS technique, which conventionally focuses on the measurement of the spectral electrical impedance of a cell culture positioned on gold electrodes [3]. From the measured spectrum it is possible to determine the state of the culture, to which a fractal dimension value was later associated. On the other hand, to analyze the changes in the fractal dimension with respect to changes in the culture, we subjected the cell cultures to damage by electric current and exposure to a cell death-inducing drug. Previously, the four algorithms used were validated by applying them on topological functions of manipulable fractal dimension. Thus, the necessary conditions for a correct estimation of an experimental signal of unknown dimension were determined. After the experiments we demonstrate that the fractal dimension due to micromotion allows to discriminate processes not detected by the spectral impedance. Among the changes detected is the differentiation between a healthy monolayer and one exposed to the drug, as well as the distinction between a seeding process and a healing process due to damage by electric current.
Materia
Ciencias Médicas y de la Salud
Impedance; Cell
Ciencias Médicas y de la Salud
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/13466

id RIDUNRN_9e409a952b3d6904a2a9c76458a31cb7
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/13466
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Determining Mammalian Cells State by FractalAcerbo, EstebanBellotti, Mariela InesBonetto, FabianCiencias Médicas y de la SaludImpedance; CellCiencias Médicas y de la SaludFil: Acerbo, Esteban. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Técnologicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, ArgentinaFil: Bellotti, Mariela Ines. Universidad Nacional de Río Negro. Sede Andina. Carrera de Medicina. Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche. Laboratorio de Cavitación y Biotecnología. ArgentinaFil: Bonetto, Fabian. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Tecnológicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, ArgentinaIn this work we analyzed the evolution of the experimental impedance signal of normal MDCK type II cell cultures as a geometric structure by estimating its fractal dimension. Also, by means of two independent experiments we tested if the fractal dimension is a characteristic value of the cellular state and complementary to the spectral electrical impedance. Fractals are defined as structures composed of smaller parts that resemble the whole [1]. Culture impedance signal evolution in time presents this behavior when sampled rapidly as shown in Fig.1, where the electrical resistance evolution of a confluent MDCK monolayer is plotted. These rapid fluctuations are associated with the cell micromotion over the electrode [2]. As the fractal behavior is present, its fractal dimension can be estimated by different algorithms, resulting in a number in the range [1,2]. One indicates a flat line and two indicates white noise influence. These cultures were monitored using the ECIS technique, which conventionally focuses on the measurement of the spectral electrical impedance of a cell culture positioned on gold electrodes [3]. From the measured spectrum it is possible to determine the state of the culture, to which a fractal dimension value was later associated. On the other hand, to analyze the changes in the fractal dimension with respect to changes in the culture, we subjected the cell cultures to damage by electric current and exposure to a cell death-inducing drug. Previously, the four algorithms used were validated by applying them on topological functions of manipulable fractal dimension. Thus, the necessary conditions for a correct estimation of an experimental signal of unknown dimension were determined. After the experiments we demonstrate that the fractal dimension due to micromotion allows to discriminate processes not detected by the spectral impedance. Among the changes detected is the differentiation between a healthy monolayer and one exposed to the drug, as well as the distinction between a seeding process and a healing process due to damage by electric current.2023-09-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://rid.unrn.edu.ar/handle/20.500.12049/13466eng5th Conference on Impedance-Based Cellular Assays (IBCA)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:19Zoai:rid.unrn.edu.ar:20.500.12049/13466instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:19.955RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Determining Mammalian Cells State by Fractal
title Determining Mammalian Cells State by Fractal
spellingShingle Determining Mammalian Cells State by Fractal
Acerbo, Esteban
Ciencias Médicas y de la Salud
Impedance; Cell
Ciencias Médicas y de la Salud
title_short Determining Mammalian Cells State by Fractal
title_full Determining Mammalian Cells State by Fractal
title_fullStr Determining Mammalian Cells State by Fractal
title_full_unstemmed Determining Mammalian Cells State by Fractal
title_sort Determining Mammalian Cells State by Fractal
dc.creator.none.fl_str_mv Acerbo, Esteban
Bellotti, Mariela Ines
Bonetto, Fabian
author Acerbo, Esteban
author_facet Acerbo, Esteban
Bellotti, Mariela Ines
Bonetto, Fabian
author_role author
author2 Bellotti, Mariela Ines
Bonetto, Fabian
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Médicas y de la Salud
Impedance; Cell
Ciencias Médicas y de la Salud
topic Ciencias Médicas y de la Salud
Impedance; Cell
Ciencias Médicas y de la Salud
dc.description.none.fl_txt_mv Fil: Acerbo, Esteban. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Técnologicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, Argentina
Fil: Bellotti, Mariela Ines. Universidad Nacional de Río Negro. Sede Andina. Carrera de Medicina. Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche. Laboratorio de Cavitación y Biotecnología. Argentina
Fil: Bonetto, Fabian. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Tecnológicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, Argentina
In this work we analyzed the evolution of the experimental impedance signal of normal MDCK type II cell cultures as a geometric structure by estimating its fractal dimension. Also, by means of two independent experiments we tested if the fractal dimension is a characteristic value of the cellular state and complementary to the spectral electrical impedance. Fractals are defined as structures composed of smaller parts that resemble the whole [1]. Culture impedance signal evolution in time presents this behavior when sampled rapidly as shown in Fig.1, where the electrical resistance evolution of a confluent MDCK monolayer is plotted. These rapid fluctuations are associated with the cell micromotion over the electrode [2]. As the fractal behavior is present, its fractal dimension can be estimated by different algorithms, resulting in a number in the range [1,2]. One indicates a flat line and two indicates white noise influence. These cultures were monitored using the ECIS technique, which conventionally focuses on the measurement of the spectral electrical impedance of a cell culture positioned on gold electrodes [3]. From the measured spectrum it is possible to determine the state of the culture, to which a fractal dimension value was later associated. On the other hand, to analyze the changes in the fractal dimension with respect to changes in the culture, we subjected the cell cultures to damage by electric current and exposure to a cell death-inducing drug. Previously, the four algorithms used were validated by applying them on topological functions of manipulable fractal dimension. Thus, the necessary conditions for a correct estimation of an experimental signal of unknown dimension were determined. After the experiments we demonstrate that the fractal dimension due to micromotion allows to discriminate processes not detected by the spectral impedance. Among the changes detected is the differentiation between a healthy monolayer and one exposed to the drug, as well as the distinction between a seeding process and a healing process due to damage by electric current.
description Fil: Acerbo, Esteban. Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina . Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, R8402AGP, Argentina c Consejo Nacional de Investigaciones Ciencia y Técnologicas (CONICET), Buenos Aires, C1033AAJ, Argentina d Universidad Nacional de Cuyo Instituto Balseiro, San Carlos de Bariloche, R8402AGP, Argentina
publishDate 2023
dc.date.none.fl_str_mv 2023-09-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://rid.unrn.edu.ar/handle/20.500.12049/13466
url http://rid.unrn.edu.ar/handle/20.500.12049/13466
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 5th Conference on Impedance-Based Cellular Assays (IBCA)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1844621619352305664
score 13.070432