Minimal length curves in unitary orbits of a Hermitian compact operator

Autores
Bottazzi, Tamara Paula; Varela, Alejandro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial.
Materia
Unitary Orbits
Geodesic Curves
Minimal Operators in Quotient Spaces
Approximation of Minimal Length Curves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/5361

id RIDUNRN_490c8819a99a80a319d4193a0ca1020c
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/5361
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Minimal length curves in unitary orbits of a Hermitian compact operatorBottazzi, Tamara PaulaVarela, AlejandroUnitary OrbitsGeodesic CurvesMinimal Operators in Quotient SpacesApproximation of Minimal Length CurvesFil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina.Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial.Elsevier2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-220926-2245https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihubhttps://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361https://doi.org/10.1016/j.difgeo.2015.12.001eng45Differential Geometry and Its Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-11T10:49:16Zoai:rid.unrn.edu.ar:20.500.12049/5361instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-11 10:49:16.567RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Minimal length curves in unitary orbits of a Hermitian compact operator
title Minimal length curves in unitary orbits of a Hermitian compact operator
spellingShingle Minimal length curves in unitary orbits of a Hermitian compact operator
Bottazzi, Tamara Paula
Unitary Orbits
Geodesic Curves
Minimal Operators in Quotient Spaces
Approximation of Minimal Length Curves
title_short Minimal length curves in unitary orbits of a Hermitian compact operator
title_full Minimal length curves in unitary orbits of a Hermitian compact operator
title_fullStr Minimal length curves in unitary orbits of a Hermitian compact operator
title_full_unstemmed Minimal length curves in unitary orbits of a Hermitian compact operator
title_sort Minimal length curves in unitary orbits of a Hermitian compact operator
dc.creator.none.fl_str_mv Bottazzi, Tamara Paula
Varela, Alejandro
author Bottazzi, Tamara Paula
author_facet Bottazzi, Tamara Paula
Varela, Alejandro
author_role author
author2 Varela, Alejandro
author2_role author
dc.subject.none.fl_str_mv Unitary Orbits
Geodesic Curves
Minimal Operators in Quotient Spaces
Approximation of Minimal Length Curves
topic Unitary Orbits
Geodesic Curves
Minimal Operators in Quotient Spaces
Approximation of Minimal Length Curves
dc.description.none.fl_txt_mv Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial.
description Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv Bottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-22
0926-2245
https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihub
https://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361
https://doi.org/10.1016/j.difgeo.2015.12.001
identifier_str_mv Bottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-22
0926-2245
url https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihub
https://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361
https://doi.org/10.1016/j.difgeo.2015.12.001
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 45
Differential Geometry and Its Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1842976461344997376
score 12.993085