Minimal length curves in unitary orbits of a Hermitian compact operator
- Autores
- Bottazzi, Tamara Paula; Varela, Alejandro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina.
Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial. - Materia
-
Unitary Orbits
Geodesic Curves
Minimal Operators in Quotient Spaces
Approximation of Minimal Length Curves - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/5361
Ver los metadatos del registro completo
id |
RIDUNRN_490c8819a99a80a319d4193a0ca1020c |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/5361 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
Minimal length curves in unitary orbits of a Hermitian compact operatorBottazzi, Tamara PaulaVarela, AlejandroUnitary OrbitsGeodesic CurvesMinimal Operators in Quotient SpacesApproximation of Minimal Length CurvesFil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina.Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina.We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial.Elsevier2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-220926-2245https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihubhttps://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361https://doi.org/10.1016/j.difgeo.2015.12.001eng45Differential Geometry and Its Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-11T10:49:16Zoai:rid.unrn.edu.ar:20.500.12049/5361instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-11 10:49:16.567RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
Minimal length curves in unitary orbits of a Hermitian compact operator |
title |
Minimal length curves in unitary orbits of a Hermitian compact operator |
spellingShingle |
Minimal length curves in unitary orbits of a Hermitian compact operator Bottazzi, Tamara Paula Unitary Orbits Geodesic Curves Minimal Operators in Quotient Spaces Approximation of Minimal Length Curves |
title_short |
Minimal length curves in unitary orbits of a Hermitian compact operator |
title_full |
Minimal length curves in unitary orbits of a Hermitian compact operator |
title_fullStr |
Minimal length curves in unitary orbits of a Hermitian compact operator |
title_full_unstemmed |
Minimal length curves in unitary orbits of a Hermitian compact operator |
title_sort |
Minimal length curves in unitary orbits of a Hermitian compact operator |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Varela, Alejandro |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Varela, Alejandro |
author_role |
author |
author2 |
Varela, Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Unitary Orbits Geodesic Curves Minimal Operators in Quotient Spaces Approximation of Minimal Length Curves |
topic |
Unitary Orbits Geodesic Curves Minimal Operators in Quotient Spaces Approximation of Minimal Length Curves |
dc.description.none.fl_txt_mv |
Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina. Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Buenos Aires, Argentina. Fil: Varela, Alejandro. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina. We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those. Estudiamos algunos ejemplos de curvas minimales en espacios homogéneos de B(H) bajo la acción a izquierda de un grupo unitario. Resultados recientes vinculan a este tipo de curvas con la existencia de operadores minimales Z (respecto de una norma cociente) en el espacio tangente de un punto inicial. |
description |
Fil: Bottazzi, Tamara P. Instituto Argentino de Matemática “Alberto P. Calderón”. Buenos Aires, Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
Bottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-22 0926-2245 https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihub https://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361 https://doi.org/10.1016/j.difgeo.2015.12.001 |
identifier_str_mv |
Bottazzi, Tamara P. y Varela, Alejandro (2016) Minimal length curves in unitary orbits of a Hermitian compact operator. Elsevier; Differential Geometry and Its Applications; 45; 1-22 0926-2245 |
url |
https://www.sciencedirect.com/science/article/pii/S0926224515001321?via%3Dihub https://rid.unrn.edu.ar/jspui/handle/20.500.12049/5361 https://doi.org/10.1016/j.difgeo.2015.12.001 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
45 Differential Geometry and Its Applications |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1842976461344997376 |
score |
12.993085 |