Minimal length curves in unitary orbits of a Hermitian compact operator
- Autores
- Bottazzi, Tamara Paula; Varela, Alejandro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Approximation of Minimal Length Curves
Geodesic Curves
Minimal Operators in Quotient Spaces
Unitary Orbits - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38575
Ver los metadatos del registro completo
| id |
CONICETDig_ab3bf00ae0d97e9db30a19e6723bde32 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38575 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Minimal length curves in unitary orbits of a Hermitian compact operatorBottazzi, Tamara PaulaVarela, AlejandroApproximation of Minimal Length CurvesGeodesic CurvesMinimal Operators in Quotient SpacesUnitary Orbitshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38575Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-220926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2015.12.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224515001321info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:13Zoai:ri.conicet.gov.ar:11336/38575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:13.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| title |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| spellingShingle |
Minimal length curves in unitary orbits of a Hermitian compact operator Bottazzi, Tamara Paula Approximation of Minimal Length Curves Geodesic Curves Minimal Operators in Quotient Spaces Unitary Orbits |
| title_short |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| title_full |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| title_fullStr |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| title_full_unstemmed |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| title_sort |
Minimal length curves in unitary orbits of a Hermitian compact operator |
| dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Varela, Alejandro |
| author |
Bottazzi, Tamara Paula |
| author_facet |
Bottazzi, Tamara Paula Varela, Alejandro |
| author_role |
author |
| author2 |
Varela, Alejandro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Approximation of Minimal Length Curves Geodesic Curves Minimal Operators in Quotient Spaces Unitary Orbits |
| topic |
Approximation of Minimal Length Curves Geodesic Curves Minimal Operators in Quotient Spaces Unitary Orbits |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those. Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38575 Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-22 0926-2245 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/38575 |
| identifier_str_mv |
Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-22 0926-2245 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2015.12.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224515001321 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976738938683392 |
| score |
13.087074 |