Minimal length curves in unitary orbits of a Hermitian compact operator

Autores
Bottazzi, Tamara Paula; Varela, Alejandro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
Approximation of Minimal Length Curves
Geodesic Curves
Minimal Operators in Quotient Spaces
Unitary Orbits
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38575

id CONICETDig_ab3bf00ae0d97e9db30a19e6723bde32
oai_identifier_str oai:ri.conicet.gov.ar:11336/38575
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Minimal length curves in unitary orbits of a Hermitian compact operatorBottazzi, Tamara PaulaVarela, AlejandroApproximation of Minimal Length CurvesGeodesic CurvesMinimal Operators in Quotient SpacesUnitary Orbitshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38575Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-220926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2015.12.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224515001321info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:09Zoai:ri.conicet.gov.ar:11336/38575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:09.513CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Minimal length curves in unitary orbits of a Hermitian compact operator
title Minimal length curves in unitary orbits of a Hermitian compact operator
spellingShingle Minimal length curves in unitary orbits of a Hermitian compact operator
Bottazzi, Tamara Paula
Approximation of Minimal Length Curves
Geodesic Curves
Minimal Operators in Quotient Spaces
Unitary Orbits
title_short Minimal length curves in unitary orbits of a Hermitian compact operator
title_full Minimal length curves in unitary orbits of a Hermitian compact operator
title_fullStr Minimal length curves in unitary orbits of a Hermitian compact operator
title_full_unstemmed Minimal length curves in unitary orbits of a Hermitian compact operator
title_sort Minimal length curves in unitary orbits of a Hermitian compact operator
dc.creator.none.fl_str_mv Bottazzi, Tamara Paula
Varela, Alejandro
author Bottazzi, Tamara Paula
author_facet Bottazzi, Tamara Paula
Varela, Alejandro
author_role author
author2 Varela, Alejandro
author2_role author
dc.subject.none.fl_str_mv Approximation of Minimal Length Curves
Geodesic Curves
Minimal Operators in Quotient Spaces
Unitary Orbits
topic Approximation of Minimal Length Curves
Geodesic Curves
Minimal Operators in Quotient Spaces
Unitary Orbits
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We study some examples of minimal length curves in homogeneous spaces of B(H) under a left action of a unitary group. Recent results relate these curves with the existence of minimal (with respect to a quotient norm) anti-Hermitian operators Z in the tangent space of the starting point. We show minimal curves that are not of this type but nevertheless can be approximated uniformly by those.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38575
Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-22
0926-2245
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38575
identifier_str_mv Bottazzi, Tamara Paula; Varela, Alejandro; Minimal length curves in unitary orbits of a Hermitian compact operator; Elsevier Science; Differential Geometry and its Applications; 45; 4-2016; 1-22
0926-2245
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2015.12.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224515001321
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082597259575296
score 13.22299