Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C
- Autores
- Bottazzi, Tamara Paula; Varela, Alejandro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator with spectral multiplicity one under the action of the unitary group U(K+C) of the unitization of the compact operators K(H) + C, or equivalently, the quotient U(K+C) /U(D(K+C)) . We relate this and the action of different unitary subgroups to describe metric geodesics (using a natural distance) which join end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about the uniqueness of short curves and prove that there exist some of these that cannot be parameterized using minimal anti-Hermitian operators of K(H) + C.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
UNITARY ORBITS
GEODESIC CURVES
MINIMALITY
FINSLER METRICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157556
Ver los metadatos del registro completo
id |
CONICETDig_b35c7ff57af463371aecbca62d35dfb0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157556 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + CBottazzi, Tamara PaulaVarela, AlejandroUNITARY ORBITSGEODESIC CURVESMINIMALITYFINSLER METRICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator with spectral multiplicity one under the action of the unitary group U(K+C) of the unitization of the compact operators K(H) + C, or equivalently, the quotient U(K+C) /U(D(K+C)) . We relate this and the action of different unitary subgroups to describe metric geodesics (using a natural distance) which join end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about the uniqueness of short curves and prove that there exist some of these that cannot be parameterized using minimal anti-Hermitian operators of K(H) + C.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157556Bottazzi, Tamara Paula; Varela, Alejandro; Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C; Elsevier Science; Differential Geometry and its Applications; 77; 8-2021; 1-150926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000620info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2021.101778info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.03650info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:13:39Zoai:ri.conicet.gov.ar:11336/157556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:13:39.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
title |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
spellingShingle |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C Bottazzi, Tamara Paula UNITARY ORBITS GEODESIC CURVES MINIMALITY FINSLER METRICS |
title_short |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
title_full |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
title_fullStr |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
title_full_unstemmed |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
title_sort |
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Varela, Alejandro |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Varela, Alejandro |
author_role |
author |
author2 |
Varela, Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
UNITARY ORBITS GEODESIC CURVES MINIMALITY FINSLER METRICS |
topic |
UNITARY ORBITS GEODESIC CURVES MINIMALITY FINSLER METRICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator with spectral multiplicity one under the action of the unitary group U(K+C) of the unitization of the compact operators K(H) + C, or equivalently, the quotient U(K+C) /U(D(K+C)) . We relate this and the action of different unitary subgroups to describe metric geodesics (using a natural distance) which join end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about the uniqueness of short curves and prove that there exist some of these that cannot be parameterized using minimal anti-Hermitian operators of K(H) + C. Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator with spectral multiplicity one under the action of the unitary group U(K+C) of the unitization of the compact operators K(H) + C, or equivalently, the quotient U(K+C) /U(D(K+C)) . We relate this and the action of different unitary subgroups to describe metric geodesics (using a natural distance) which join end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about the uniqueness of short curves and prove that there exist some of these that cannot be parameterized using minimal anti-Hermitian operators of K(H) + C. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157556 Bottazzi, Tamara Paula; Varela, Alejandro; Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C; Elsevier Science; Differential Geometry and its Applications; 77; 8-2021; 1-15 0926-2245 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157556 |
identifier_str_mv |
Bottazzi, Tamara Paula; Varela, Alejandro; Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C; Elsevier Science; Differential Geometry and its Applications; 77; 8-2021; 1-15 0926-2245 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000620 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2021.101778 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.03650 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083283945783296 |
score |
13.22299 |