A study of orthogonality of bounded linear operators

Autores
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study  Birkhoff-James orthogonality and isosceles orthogonality of bounded  linear operators between Hilbert spaces and Banach spaces.  We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and  some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.
Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Sain, Debmalya. Indian Institute of Science; India
Materia
BIRKHOFF-JAMES ORTHOGONALITY
ISOSCELES ORTHOGONALITY
NORM ATTAINMENT SET
DISJOINT SUPPORT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111019

id CONICETDig_04bf34ce628cd36b88f2f643d5bad3bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/111019
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A study of orthogonality of bounded linear operatorsBottazzi, Tamara PaulaConde, Cristian MarceloSain, DebmalyaBIRKHOFF-JAMES ORTHOGONALITYISOSCELES ORTHOGONALITYNORM ATTAINMENT SETDISJOINT SUPPORThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study  Birkhoff-James orthogonality and isosceles orthogonality of bounded  linear operators between Hilbert spaces and Banach spaces.  We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and  some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Sain, Debmalya. Indian Institute of Science; IndiaBanach Mathematical Research Group2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111019Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-10181735-8787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-019-00050-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-019-00050-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:45Zoai:ri.conicet.gov.ar:11336/111019instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:46.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A study of orthogonality of bounded linear operators
title A study of orthogonality of bounded linear operators
spellingShingle A study of orthogonality of bounded linear operators
Bottazzi, Tamara Paula
BIRKHOFF-JAMES ORTHOGONALITY
ISOSCELES ORTHOGONALITY
NORM ATTAINMENT SET
DISJOINT SUPPORT
title_short A study of orthogonality of bounded linear operators
title_full A study of orthogonality of bounded linear operators
title_fullStr A study of orthogonality of bounded linear operators
title_full_unstemmed A study of orthogonality of bounded linear operators
title_sort A study of orthogonality of bounded linear operators
dc.creator.none.fl_str_mv Bottazzi, Tamara Paula
Conde, Cristian Marcelo
Sain, Debmalya
author Bottazzi, Tamara Paula
author_facet Bottazzi, Tamara Paula
Conde, Cristian Marcelo
Sain, Debmalya
author_role author
author2 Conde, Cristian Marcelo
Sain, Debmalya
author2_role author
author
dc.subject.none.fl_str_mv BIRKHOFF-JAMES ORTHOGONALITY
ISOSCELES ORTHOGONALITY
NORM ATTAINMENT SET
DISJOINT SUPPORT
topic BIRKHOFF-JAMES ORTHOGONALITY
ISOSCELES ORTHOGONALITY
NORM ATTAINMENT SET
DISJOINT SUPPORT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study  Birkhoff-James orthogonality and isosceles orthogonality of bounded  linear operators between Hilbert spaces and Banach spaces.  We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and  some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.
Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Sain, Debmalya. Indian Institute of Science; India
description We study  Birkhoff-James orthogonality and isosceles orthogonality of bounded  linear operators between Hilbert spaces and Banach spaces.  We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and  some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111019
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-1018
1735-8787
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111019
identifier_str_mv Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-1018
1735-8787
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-019-00050-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-019-00050-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Banach Mathematical Research Group
publisher.none.fl_str_mv Banach Mathematical Research Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613155474374656
score 13.070432