A study of orthogonality of bounded linear operators
- Autores
- Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.
Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Sain, Debmalya. Indian Institute of Science; India - Materia
-
BIRKHOFF-JAMES ORTHOGONALITY
ISOSCELES ORTHOGONALITY
NORM ATTAINMENT SET
DISJOINT SUPPORT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111019
Ver los metadatos del registro completo
id |
CONICETDig_04bf34ce628cd36b88f2f643d5bad3bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111019 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A study of orthogonality of bounded linear operatorsBottazzi, Tamara PaulaConde, Cristian MarceloSain, DebmalyaBIRKHOFF-JAMES ORTHOGONALITYISOSCELES ORTHOGONALITYNORM ATTAINMENT SETDISJOINT SUPPORThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space.Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Sain, Debmalya. Indian Institute of Science; IndiaBanach Mathematical Research Group2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111019Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-10181735-8787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-019-00050-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-019-00050-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:45Zoai:ri.conicet.gov.ar:11336/111019instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:46.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A study of orthogonality of bounded linear operators |
title |
A study of orthogonality of bounded linear operators |
spellingShingle |
A study of orthogonality of bounded linear operators Bottazzi, Tamara Paula BIRKHOFF-JAMES ORTHOGONALITY ISOSCELES ORTHOGONALITY NORM ATTAINMENT SET DISJOINT SUPPORT |
title_short |
A study of orthogonality of bounded linear operators |
title_full |
A study of orthogonality of bounded linear operators |
title_fullStr |
A study of orthogonality of bounded linear operators |
title_full_unstemmed |
A study of orthogonality of bounded linear operators |
title_sort |
A study of orthogonality of bounded linear operators |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Conde, Cristian Marcelo Sain, Debmalya |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Conde, Cristian Marcelo Sain, Debmalya |
author_role |
author |
author2 |
Conde, Cristian Marcelo Sain, Debmalya |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIRKHOFF-JAMES ORTHOGONALITY ISOSCELES ORTHOGONALITY NORM ATTAINMENT SET DISJOINT SUPPORT |
topic |
BIRKHOFF-JAMES ORTHOGONALITY ISOSCELES ORTHOGONALITY NORM ATTAINMENT SET DISJOINT SUPPORT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. Fil: Bottazzi, Tamara Paula. Universidad Nacional de Rio Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computacion de Alto Rendimiento.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Sain, Debmalya. Indian Institute of Science; India |
description |
We study Birkhoff-James orthogonality and isosceles orthogonality of bounded linear operators between Hilbert spaces and Banach spaces. We explore Birkhoff-James orthogonality of bounded linear operators in light of a new notion introduced by us and also discuss some of the possible applications in this regard. We also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert space and some of the related properties, including that of operators having disjoint support. We further explore the relations between Birkhoff-James orthogonality and isosceles orthogonality in a general Banach space. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111019 Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-1018 1735-8787 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111019 |
identifier_str_mv |
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Sain, Debmalya; A study of orthogonality of bounded linear operators; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 14; 3; 7-2020; 1001-1018 1735-8787 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-019-00050-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-019-00050-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Banach Mathematical Research Group |
publisher.none.fl_str_mv |
Banach Mathematical Research Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613155474374656 |
score |
13.070432 |