Algoritmos no monótonos de región de confianza y filtros para optimización no lineal

Autores
Mendonça, María de Gracia
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Maciel, María Cristina
Descripción
Un algoritmo para problemas de optimización no lineal con restricciones de igualdad y de caja es presentado. En el marco del método de programación cuadrática secuencial, con una estrategia de globalización de región de con- fianza, se evita el uso de parámetros de penalización en funciones de mérito mediante el uso de un filtro inclinado con memoria. Los subproblemas de región de cofianza son resueltos mediante el uso del método de gradiente espectral proyectado (SPG), un método no monótono para problemas convexos de gran escala. El paso de prueba es evaluado mediante una condición no monótona sobre el Lagrangiano de la función objetivo, que puede ser considerado una generalización de la condición de fracción decrecimiento de Cauchy y la condición no monótona para búsqueda lineal de Grippo, Lampariello y Lucidi. Las propiedades de buena definición y convergencia global del algoritmo son analizadas bajo hipótesis estándar para problemas de optimización no lineal con restricciones de igualdad y de caja, basados en una estrategia de región de cofianza. Resultados numéricos son reportados para validar la eficiencia y robustez del algoritmo en problemas de variado tama~no, y un problema de ajuste de observaciones con ruido a una solución de una ecuación diferencial de segundo orden, que genera un problema no diferenciable. La condición de decrecimiento no monótona es comparada con la tradicional condición monótona mediante perfiles de rendimiento.
An algorithm based on nonmonotone trust-region- lter method for a nonlinear problem with equality and box constraints is presented. In the frame of sequential quadratic programming with a strategy for global convergence based on the trust region approach the use of a slanting lter with memory avoid the pitfalls of penalty parameters of merit functions. The trust region subproblems are solved by the Spectral Projected Gradient (SPG), a nonmonotone method for large-scale convex constrained problems. The trial step is evaluated by a nonmonotone condition in the Lagrangian of the objetive function, which can be considered not only a generalization of the fraction of Cauchy decrease condition, but also a generalization of the nonmonotone line search proposed by Grippo, Lampariello y Lucidi. Well definition and global convergence properties are analyzed under mild conditions for the non linear problems with equality and box restrictions based on trust region. Numerical results are reported to validate the robustness and eficiency of the algorithm on varied size test problems, and for fit a set of noisy observations to a second order diferential equation solution wich generate a non diferential problem. The nonmonotone rule is compared to the traditional monotone rule through performance profiles.
Fil: Mendonça, María de Gracia. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Matemáticas
Algoritmos
Optimización no lineal
Optimización matemática
Algoritmo no monótono
Filtros
Región de confianza
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/4130

id RID-UNS_dbd17b768bcd1243d19b39508d7b7730
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/4130
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Algoritmos no monótonos de región de confianza y filtros para optimización no linealMendonça, María de GraciaMatemáticasAlgoritmosOptimización no linealOptimización matemáticaAlgoritmo no monótonoFiltrosRegión de confianzaUn algoritmo para problemas de optimización no lineal con restricciones de igualdad y de caja es presentado. En el marco del método de programación cuadrática secuencial, con una estrategia de globalización de región de con- fianza, se evita el uso de parámetros de penalización en funciones de mérito mediante el uso de un filtro inclinado con memoria. Los subproblemas de región de cofianza son resueltos mediante el uso del método de gradiente espectral proyectado (SPG), un método no monótono para problemas convexos de gran escala. El paso de prueba es evaluado mediante una condición no monótona sobre el Lagrangiano de la función objetivo, que puede ser considerado una generalización de la condición de fracción decrecimiento de Cauchy y la condición no monótona para búsqueda lineal de Grippo, Lampariello y Lucidi. Las propiedades de buena definición y convergencia global del algoritmo son analizadas bajo hipótesis estándar para problemas de optimización no lineal con restricciones de igualdad y de caja, basados en una estrategia de región de cofianza. Resultados numéricos son reportados para validar la eficiencia y robustez del algoritmo en problemas de variado tama~no, y un problema de ajuste de observaciones con ruido a una solución de una ecuación diferencial de segundo orden, que genera un problema no diferenciable. La condición de decrecimiento no monótona es comparada con la tradicional condición monótona mediante perfiles de rendimiento.An algorithm based on nonmonotone trust-region- lter method for a nonlinear problem with equality and box constraints is presented. In the frame of sequential quadratic programming with a strategy for global convergence based on the trust region approach the use of a slanting lter with memory avoid the pitfalls of penalty parameters of merit functions. The trust region subproblems are solved by the Spectral Projected Gradient (SPG), a nonmonotone method for large-scale convex constrained problems. The trial step is evaluated by a nonmonotone condition in the Lagrangian of the objetive function, which can be considered not only a generalization of the fraction of Cauchy decrease condition, but also a generalization of the nonmonotone line search proposed by Grippo, Lampariello y Lucidi. Well definition and global convergence properties are analyzed under mild conditions for the non linear problems with equality and box restrictions based on trust region. Numerical results are reported to validate the robustness and eficiency of the algorithm on varied size test problems, and for fit a set of noisy observations to a second order diferential equation solution wich generate a non diferential problem. The nonmonotone rule is compared to the traditional monotone rule through performance profiles.Fil: Mendonça, María de Gracia. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaMaciel, María Cristina2017-12-07info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/4130spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-29T13:42:11Zoai:repositorio.bc.uns.edu.ar:123456789/4130instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-29 13:42:11.846Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
title Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
spellingShingle Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
Mendonça, María de Gracia
Matemáticas
Algoritmos
Optimización no lineal
Optimización matemática
Algoritmo no monótono
Filtros
Región de confianza
title_short Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
title_full Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
title_fullStr Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
title_full_unstemmed Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
title_sort Algoritmos no monótonos de región de confianza y filtros para optimización no lineal
dc.creator.none.fl_str_mv Mendonça, María de Gracia
author Mendonça, María de Gracia
author_facet Mendonça, María de Gracia
author_role author
dc.contributor.none.fl_str_mv Maciel, María Cristina
dc.subject.none.fl_str_mv Matemáticas
Algoritmos
Optimización no lineal
Optimización matemática
Algoritmo no monótono
Filtros
Región de confianza
topic Matemáticas
Algoritmos
Optimización no lineal
Optimización matemática
Algoritmo no monótono
Filtros
Región de confianza
dc.description.none.fl_txt_mv Un algoritmo para problemas de optimización no lineal con restricciones de igualdad y de caja es presentado. En el marco del método de programación cuadrática secuencial, con una estrategia de globalización de región de con- fianza, se evita el uso de parámetros de penalización en funciones de mérito mediante el uso de un filtro inclinado con memoria. Los subproblemas de región de cofianza son resueltos mediante el uso del método de gradiente espectral proyectado (SPG), un método no monótono para problemas convexos de gran escala. El paso de prueba es evaluado mediante una condición no monótona sobre el Lagrangiano de la función objetivo, que puede ser considerado una generalización de la condición de fracción decrecimiento de Cauchy y la condición no monótona para búsqueda lineal de Grippo, Lampariello y Lucidi. Las propiedades de buena definición y convergencia global del algoritmo son analizadas bajo hipótesis estándar para problemas de optimización no lineal con restricciones de igualdad y de caja, basados en una estrategia de región de cofianza. Resultados numéricos son reportados para validar la eficiencia y robustez del algoritmo en problemas de variado tama~no, y un problema de ajuste de observaciones con ruido a una solución de una ecuación diferencial de segundo orden, que genera un problema no diferenciable. La condición de decrecimiento no monótona es comparada con la tradicional condición monótona mediante perfiles de rendimiento.
An algorithm based on nonmonotone trust-region- lter method for a nonlinear problem with equality and box constraints is presented. In the frame of sequential quadratic programming with a strategy for global convergence based on the trust region approach the use of a slanting lter with memory avoid the pitfalls of penalty parameters of merit functions. The trust region subproblems are solved by the Spectral Projected Gradient (SPG), a nonmonotone method for large-scale convex constrained problems. The trial step is evaluated by a nonmonotone condition in the Lagrangian of the objetive function, which can be considered not only a generalization of the fraction of Cauchy decrease condition, but also a generalization of the nonmonotone line search proposed by Grippo, Lampariello y Lucidi. Well definition and global convergence properties are analyzed under mild conditions for the non linear problems with equality and box restrictions based on trust region. Numerical results are reported to validate the robustness and eficiency of the algorithm on varied size test problems, and for fit a set of noisy observations to a second order diferential equation solution wich generate a non diferential problem. The nonmonotone rule is compared to the traditional monotone rule through performance profiles.
Fil: Mendonça, María de Gracia. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description Un algoritmo para problemas de optimización no lineal con restricciones de igualdad y de caja es presentado. En el marco del método de programación cuadrática secuencial, con una estrategia de globalización de región de con- fianza, se evita el uso de parámetros de penalización en funciones de mérito mediante el uso de un filtro inclinado con memoria. Los subproblemas de región de cofianza son resueltos mediante el uso del método de gradiente espectral proyectado (SPG), un método no monótono para problemas convexos de gran escala. El paso de prueba es evaluado mediante una condición no monótona sobre el Lagrangiano de la función objetivo, que puede ser considerado una generalización de la condición de fracción decrecimiento de Cauchy y la condición no monótona para búsqueda lineal de Grippo, Lampariello y Lucidi. Las propiedades de buena definición y convergencia global del algoritmo son analizadas bajo hipótesis estándar para problemas de optimización no lineal con restricciones de igualdad y de caja, basados en una estrategia de región de cofianza. Resultados numéricos son reportados para validar la eficiencia y robustez del algoritmo en problemas de variado tama~no, y un problema de ajuste de observaciones con ruido a una solución de una ecuación diferencial de segundo orden, que genera un problema no diferenciable. La condición de decrecimiento no monótona es comparada con la tradicional condición monótona mediante perfiles de rendimiento.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-07
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/4130
url http://repositoriodigital.uns.edu.ar/handle/123456789/4130
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1844619087044411392
score 12.559606