Supremo álgebras distributivas : una generalización de las álgebras de Tarski

Autores
Calomino, Ismael María
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Celani, Sergio
Descripción
En esta tesis estudiamos una variedad particular de semirretículos con un concepto de distributividad. Dichas estructuras fueron estudiadas por Cornish y Hickman en [29] y [35], donde en este último artículo Hickman las llama supremo álgebras distributivas. Otros autores han llamado a éstas álgebras de diferentes maneras. A lo largo de esta memoria, y para mayor simplicidad, las llamaremos DN-álgebras. Nuestro primer objetivo es obtener una representación topológica a través de ciertos espacios sober con una base distinguida de subconjuntos abiertos, compactos y dualmente compactos satisfaciendo una condición adicional. A dichos espacios los hemos llamados DN-espacios. Extendemos esta representación a una dualidad probando que la categoría cuyos objetos son DN-álgebras y morfismos V-semi-homomorfismos es dualmente equivalente a la categoría que tiene como objetos DN-espacios y como morfismos ciertas relaciones binarias. También extendemos esta dualidad a la categoría de las DN-álgebras con homomorfismos. Nuestro segundo objetivo es aplicar dicha dualidad para interpretar topológicamente algunos conceptos algebraicos. Caracterizamos los homomorfiosmos inyectivos y sobreyectivos, los retículos de los filtros, filtros finitamente generados, subálgebras y congruencias. También desarrollamos un nuevo enfoque sobre la existencia de la extensión libre de una DN-álgebra sobre la variedad de los retículos distributivos acotados. Siguiendo la representación dual de los homomorfismos sobreyectivos, presentamos una caracterización de las imágenes homomorfas de una DN-álgebra a través de ciertas familias de subconjuntos saturados básicos irreducibles de su espacio dual dotadas de la menor topología Vietoris. Por otro lado, introducimos una definición alternativa de aniquilador relativo y presentamos algunas nuevas equivalencias de la distributividad. Definimos las clases de las DN-álgebras normales y DN-álgebras p-lineales y estudiamos sus estructuras en término de aniquiladores. Por último, analizamos una clase particular de función entre DN-álgebras para luego estudiar la clase de las DN-álgebras dotadas con un operador modal de necesidad. Obtenemos una representación y dualidad topológica y mostramos algunas aplicaciones.
In this thesis we study a particular variety of semilattices with a concept of distributivity. Such structures were studied by Cornish and Hickman in [29] and [35], in this last article Hickman called them distributive join algebras. Others authors have called these algebras in different ways. Throughout this report, and for simplicity, we will call them DN-algebras. Our first objective is to obtain a topological representation through certain sober spaces with distinguished open, compact and dually compact subsets satisfying an additional condition. We have named these spaces DN-spaces. We extend this representation to a duality proving that the category whose objects are DN-algebras and whose morphisms are _-semi-homomorphisms is dually equivalent to the category whose objects are DN-spaces and whose morphisms are certain binary relations. We also extend this duality to the category of DN-algebras with homomorphisms. Our second objective is to apply this duality to topologically interpreting some algebraic concepts. We characterize injective and surjective homomorphisms, the lattices of filters, fionitely generated filters, subalgebras and congruences. We also develop a new approach to the existence of the free extension of a DN-algebra on the variety of bounded distributive lattices. Following the dual representation of surjective homomorphisms, we present a characterization of homomorphic images of a DN-algebra through certain families of irreducible basic saturated subsets from its dual space which have been equipped with the lower Vietoris topology. On the other hand, we introduce an alternative definition of relative annihilator and we present some new equivalences of the distributivity. We define the classes of normal DN-algebras and p-linear DN-algebras and we study their structures in terms of annihilators. Finally, we analyze a particular kind of function between DN-algebras and then we study the class of DN-algebras equipped with a modal operator of necessity. We get a representation and a topological duality and show some applications.
Fil: Calomino, Ismael María. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Matemáticas
Semirretículos
Distributividad
Dualidades topológicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/2635

id RID-UNS_be3657f333dfacd62aba19eb9456fb8d
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/2635
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Supremo álgebras distributivas : una generalización de las álgebras de TarskiCalomino, Ismael MaríaMatemáticasSemirretículosDistributividadDualidades topológicasEn esta tesis estudiamos una variedad particular de semirretículos con un concepto de distributividad. Dichas estructuras fueron estudiadas por Cornish y Hickman en [29] y [35], donde en este último artículo Hickman las llama supremo álgebras distributivas. Otros autores han llamado a éstas álgebras de diferentes maneras. A lo largo de esta memoria, y para mayor simplicidad, las llamaremos DN-álgebras. Nuestro primer objetivo es obtener una representación topológica a través de ciertos espacios sober con una base distinguida de subconjuntos abiertos, compactos y dualmente compactos satisfaciendo una condición adicional. A dichos espacios los hemos llamados DN-espacios. Extendemos esta representación a una dualidad probando que la categoría cuyos objetos son DN-álgebras y morfismos V-semi-homomorfismos es dualmente equivalente a la categoría que tiene como objetos DN-espacios y como morfismos ciertas relaciones binarias. También extendemos esta dualidad a la categoría de las DN-álgebras con homomorfismos. Nuestro segundo objetivo es aplicar dicha dualidad para interpretar topológicamente algunos conceptos algebraicos. Caracterizamos los homomorfiosmos inyectivos y sobreyectivos, los retículos de los filtros, filtros finitamente generados, subálgebras y congruencias. También desarrollamos un nuevo enfoque sobre la existencia de la extensión libre de una DN-álgebra sobre la variedad de los retículos distributivos acotados. Siguiendo la representación dual de los homomorfismos sobreyectivos, presentamos una caracterización de las imágenes homomorfas de una DN-álgebra a través de ciertas familias de subconjuntos saturados básicos irreducibles de su espacio dual dotadas de la menor topología Vietoris. Por otro lado, introducimos una definición alternativa de aniquilador relativo y presentamos algunas nuevas equivalencias de la distributividad. Definimos las clases de las DN-álgebras normales y DN-álgebras p-lineales y estudiamos sus estructuras en término de aniquiladores. Por último, analizamos una clase particular de función entre DN-álgebras para luego estudiar la clase de las DN-álgebras dotadas con un operador modal de necesidad. Obtenemos una representación y dualidad topológica y mostramos algunas aplicaciones.In this thesis we study a particular variety of semilattices with a concept of distributivity. Such structures were studied by Cornish and Hickman in [29] and [35], in this last article Hickman called them distributive join algebras. Others authors have called these algebras in different ways. Throughout this report, and for simplicity, we will call them DN-algebras. Our first objective is to obtain a topological representation through certain sober spaces with distinguished open, compact and dually compact subsets satisfying an additional condition. We have named these spaces DN-spaces. We extend this representation to a duality proving that the category whose objects are DN-algebras and whose morphisms are _-semi-homomorphisms is dually equivalent to the category whose objects are DN-spaces and whose morphisms are certain binary relations. We also extend this duality to the category of DN-algebras with homomorphisms. Our second objective is to apply this duality to topologically interpreting some algebraic concepts. We characterize injective and surjective homomorphisms, the lattices of filters, fionitely generated filters, subalgebras and congruences. We also develop a new approach to the existence of the free extension of a DN-algebra on the variety of bounded distributive lattices. Following the dual representation of surjective homomorphisms, we present a characterization of homomorphic images of a DN-algebra through certain families of irreducible basic saturated subsets from its dual space which have been equipped with the lower Vietoris topology. On the other hand, we introduce an alternative definition of relative annihilator and we present some new equivalences of the distributivity. We define the classes of normal DN-algebras and p-linear DN-algebras and we study their structures in terms of annihilators. Finally, we analyze a particular kind of function between DN-algebras and then we study the class of DN-algebras equipped with a modal operator of necessity. We get a representation and a topological duality and show some applications.Fil: Calomino, Ismael María. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaCelani, Sergio2016-03-11info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/2635spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-29T13:42:09Zoai:repositorio.bc.uns.edu.ar:123456789/2635instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-29 13:42:10.14Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Supremo álgebras distributivas : una generalización de las álgebras de Tarski
title Supremo álgebras distributivas : una generalización de las álgebras de Tarski
spellingShingle Supremo álgebras distributivas : una generalización de las álgebras de Tarski
Calomino, Ismael María
Matemáticas
Semirretículos
Distributividad
Dualidades topológicas
title_short Supremo álgebras distributivas : una generalización de las álgebras de Tarski
title_full Supremo álgebras distributivas : una generalización de las álgebras de Tarski
title_fullStr Supremo álgebras distributivas : una generalización de las álgebras de Tarski
title_full_unstemmed Supremo álgebras distributivas : una generalización de las álgebras de Tarski
title_sort Supremo álgebras distributivas : una generalización de las álgebras de Tarski
dc.creator.none.fl_str_mv Calomino, Ismael María
author Calomino, Ismael María
author_facet Calomino, Ismael María
author_role author
dc.contributor.none.fl_str_mv Celani, Sergio
dc.subject.none.fl_str_mv Matemáticas
Semirretículos
Distributividad
Dualidades topológicas
topic Matemáticas
Semirretículos
Distributividad
Dualidades topológicas
dc.description.none.fl_txt_mv En esta tesis estudiamos una variedad particular de semirretículos con un concepto de distributividad. Dichas estructuras fueron estudiadas por Cornish y Hickman en [29] y [35], donde en este último artículo Hickman las llama supremo álgebras distributivas. Otros autores han llamado a éstas álgebras de diferentes maneras. A lo largo de esta memoria, y para mayor simplicidad, las llamaremos DN-álgebras. Nuestro primer objetivo es obtener una representación topológica a través de ciertos espacios sober con una base distinguida de subconjuntos abiertos, compactos y dualmente compactos satisfaciendo una condición adicional. A dichos espacios los hemos llamados DN-espacios. Extendemos esta representación a una dualidad probando que la categoría cuyos objetos son DN-álgebras y morfismos V-semi-homomorfismos es dualmente equivalente a la categoría que tiene como objetos DN-espacios y como morfismos ciertas relaciones binarias. También extendemos esta dualidad a la categoría de las DN-álgebras con homomorfismos. Nuestro segundo objetivo es aplicar dicha dualidad para interpretar topológicamente algunos conceptos algebraicos. Caracterizamos los homomorfiosmos inyectivos y sobreyectivos, los retículos de los filtros, filtros finitamente generados, subálgebras y congruencias. También desarrollamos un nuevo enfoque sobre la existencia de la extensión libre de una DN-álgebra sobre la variedad de los retículos distributivos acotados. Siguiendo la representación dual de los homomorfismos sobreyectivos, presentamos una caracterización de las imágenes homomorfas de una DN-álgebra a través de ciertas familias de subconjuntos saturados básicos irreducibles de su espacio dual dotadas de la menor topología Vietoris. Por otro lado, introducimos una definición alternativa de aniquilador relativo y presentamos algunas nuevas equivalencias de la distributividad. Definimos las clases de las DN-álgebras normales y DN-álgebras p-lineales y estudiamos sus estructuras en término de aniquiladores. Por último, analizamos una clase particular de función entre DN-álgebras para luego estudiar la clase de las DN-álgebras dotadas con un operador modal de necesidad. Obtenemos una representación y dualidad topológica y mostramos algunas aplicaciones.
In this thesis we study a particular variety of semilattices with a concept of distributivity. Such structures were studied by Cornish and Hickman in [29] and [35], in this last article Hickman called them distributive join algebras. Others authors have called these algebras in different ways. Throughout this report, and for simplicity, we will call them DN-algebras. Our first objective is to obtain a topological representation through certain sober spaces with distinguished open, compact and dually compact subsets satisfying an additional condition. We have named these spaces DN-spaces. We extend this representation to a duality proving that the category whose objects are DN-algebras and whose morphisms are _-semi-homomorphisms is dually equivalent to the category whose objects are DN-spaces and whose morphisms are certain binary relations. We also extend this duality to the category of DN-algebras with homomorphisms. Our second objective is to apply this duality to topologically interpreting some algebraic concepts. We characterize injective and surjective homomorphisms, the lattices of filters, fionitely generated filters, subalgebras and congruences. We also develop a new approach to the existence of the free extension of a DN-algebra on the variety of bounded distributive lattices. Following the dual representation of surjective homomorphisms, we present a characterization of homomorphic images of a DN-algebra through certain families of irreducible basic saturated subsets from its dual space which have been equipped with the lower Vietoris topology. On the other hand, we introduce an alternative definition of relative annihilator and we present some new equivalences of the distributivity. We define the classes of normal DN-algebras and p-linear DN-algebras and we study their structures in terms of annihilators. Finally, we analyze a particular kind of function between DN-algebras and then we study the class of DN-algebras equipped with a modal operator of necessity. We get a representation and a topological duality and show some applications.
Fil: Calomino, Ismael María. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description En esta tesis estudiamos una variedad particular de semirretículos con un concepto de distributividad. Dichas estructuras fueron estudiadas por Cornish y Hickman en [29] y [35], donde en este último artículo Hickman las llama supremo álgebras distributivas. Otros autores han llamado a éstas álgebras de diferentes maneras. A lo largo de esta memoria, y para mayor simplicidad, las llamaremos DN-álgebras. Nuestro primer objetivo es obtener una representación topológica a través de ciertos espacios sober con una base distinguida de subconjuntos abiertos, compactos y dualmente compactos satisfaciendo una condición adicional. A dichos espacios los hemos llamados DN-espacios. Extendemos esta representación a una dualidad probando que la categoría cuyos objetos son DN-álgebras y morfismos V-semi-homomorfismos es dualmente equivalente a la categoría que tiene como objetos DN-espacios y como morfismos ciertas relaciones binarias. También extendemos esta dualidad a la categoría de las DN-álgebras con homomorfismos. Nuestro segundo objetivo es aplicar dicha dualidad para interpretar topológicamente algunos conceptos algebraicos. Caracterizamos los homomorfiosmos inyectivos y sobreyectivos, los retículos de los filtros, filtros finitamente generados, subálgebras y congruencias. También desarrollamos un nuevo enfoque sobre la existencia de la extensión libre de una DN-álgebra sobre la variedad de los retículos distributivos acotados. Siguiendo la representación dual de los homomorfismos sobreyectivos, presentamos una caracterización de las imágenes homomorfas de una DN-álgebra a través de ciertas familias de subconjuntos saturados básicos irreducibles de su espacio dual dotadas de la menor topología Vietoris. Por otro lado, introducimos una definición alternativa de aniquilador relativo y presentamos algunas nuevas equivalencias de la distributividad. Definimos las clases de las DN-álgebras normales y DN-álgebras p-lineales y estudiamos sus estructuras en término de aniquiladores. Por último, analizamos una clase particular de función entre DN-álgebras para luego estudiar la clase de las DN-álgebras dotadas con un operador modal de necesidad. Obtenemos una representación y dualidad topológica y mostramos algunas aplicaciones.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-11
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/2635
url http://repositoriodigital.uns.edu.ar/handle/123456789/2635
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1844619085930823680
score 12.559606