Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones
- Autores
- Menchón, María Paula
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Celani, Sergio
- Descripción
- En el estudio de las álgebras relacionadas a las lógicas no-clásicas, los semirretículos (distributivos) están siempre presentes. Por ejemplo, la semántica algebraica del fragmento{ --;^; T} de la lógica intuicionista modal es la variedad de los semirretículos implicativos, que son una clase especial de semirretículos distributivos. En esta tesis, introducimos y estudiamos la clase de semirretículos distributivos acotados dotados de operadores modales que cumplen con la condición de monotonía. Estudiamos una teoría de representación para estas álgebras usando las extensiones canónicas y desarrollamos una dualidad completa a través de espacios sober. Dichos resultados son aplicables, bajo modificaciones menores, al estudio de los retículos distributivos acotados, los semirretículos implicativos, las álgebras de Heyting y a las álgebras de Boole con operadores monótonos. Mostraremos cómo nuestra dualidad se extiende a algunos casos particulares. En el caso de las álgebras de Boole, nuestra dualidad incluye, como casos particulares, las dadas en [12] y [31]. Las lógicas modales monótonas han surgido en distintas áreas de aplicación, como por ejemplo, asociadas a ciertas sem anticas utilizadas en computación teórica e inteligencia artificial. Usando la dualidad desarrollada, estudiaremos algunas extensiones obtenidas a partir de un sistema deductivo basado en semirretículos con operadores modales monótonos. A estos sistemas deductivos los dotaremos de una semántica de entornos, y nuestro objetivo principal es probar la completitud de estas extensiones con respecto a una clase característica de marcos monótonos. La variedad de las álgebras de Boole con operadores modales monótonos es dualmente equivalente a dos clases de marcos monótonos generales descriptivos. Clarificaremos este fenómeno mostrando que existe una correspondencia biyectiva entre estas dos clases. Hablaremos sobre algunas clases de marcos de entornos monótonos generales, tales como las clases de punto compacto, imagen compacto y marcos monótonos generales repletos, y estudiaremos las relaciones entre ellos. También probaremos que las nociones de marco monótono punto compacto, e imagen compacto se preservan bajo morfismos acotados fuertes.
In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the { --;^; T}fragment of intuitionistic logic is the variety of implicative meetsemilattices, which are distributive semilattices. In this thesis we introduce and study the class of distributive meet-semilattices endowed with monotonic modal operators. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality (Stone style) for them. Also, we show how our new duality extends to some particular subclasses. So, most of the results given in this paper are applicable, with minor modi cations, to the study of bounded distributive lattices, implicative semilattices, Heyting algebras, and Boolean algebras with monotonic operators. We note that in the particular case of Boolean algebras our duality yields the duality given in [12] and [31]. Monotone modal logics have emerged in several application areas such as computer science and social choice theory. Using the developed duality, we study some extensions obtained from a semilattice based deductive system with monotonic modal operators. We give neighborhood semantics, and our main objective is to prove completeness with respect to a characteristic classes of monotonic frames. The variety of Boolean algebras with monotonic modal operators is dually equivalent to two classes of descriptive general monotonic frames. We shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall discuss some classes of general monotonic neighborhood frames, such as the classes of point-compact, image compact and replete general m-frames, and we shall study the relationships between them. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms.
Fil: Menchón, María Paula. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
Matemáticas
Topología
Lógica modal
Operadores modales
Semirretículos distributivos
Extensión canónica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional del Sur
- OAI Identificador
- oai:repositorio.bc.uns.edu.ar:123456789/4558
Ver los metadatos del registro completo
id |
RID-UNS_2de34098496fb246aa6cae9daa8c8f25 |
---|---|
oai_identifier_str |
oai:repositorio.bc.uns.edu.ar:123456789/4558 |
network_acronym_str |
RID-UNS |
repository_id_str |
|
network_name_str |
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) |
spelling |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicacionesMenchón, María PaulaMatemáticasTopologíaLógica modalOperadores modalesSemirretículos distributivosExtensión canónicaEn el estudio de las álgebras relacionadas a las lógicas no-clásicas, los semirretículos (distributivos) están siempre presentes. Por ejemplo, la semántica algebraica del fragmento{ --;^; T} de la lógica intuicionista modal es la variedad de los semirretículos implicativos, que son una clase especial de semirretículos distributivos. En esta tesis, introducimos y estudiamos la clase de semirretículos distributivos acotados dotados de operadores modales que cumplen con la condición de monotonía. Estudiamos una teoría de representación para estas álgebras usando las extensiones canónicas y desarrollamos una dualidad completa a través de espacios sober. Dichos resultados son aplicables, bajo modificaciones menores, al estudio de los retículos distributivos acotados, los semirretículos implicativos, las álgebras de Heyting y a las álgebras de Boole con operadores monótonos. Mostraremos cómo nuestra dualidad se extiende a algunos casos particulares. En el caso de las álgebras de Boole, nuestra dualidad incluye, como casos particulares, las dadas en [12] y [31]. Las lógicas modales monótonas han surgido en distintas áreas de aplicación, como por ejemplo, asociadas a ciertas sem anticas utilizadas en computación teórica e inteligencia artificial. Usando la dualidad desarrollada, estudiaremos algunas extensiones obtenidas a partir de un sistema deductivo basado en semirretículos con operadores modales monótonos. A estos sistemas deductivos los dotaremos de una semántica de entornos, y nuestro objetivo principal es probar la completitud de estas extensiones con respecto a una clase característica de marcos monótonos. La variedad de las álgebras de Boole con operadores modales monótonos es dualmente equivalente a dos clases de marcos monótonos generales descriptivos. Clarificaremos este fenómeno mostrando que existe una correspondencia biyectiva entre estas dos clases. Hablaremos sobre algunas clases de marcos de entornos monótonos generales, tales como las clases de punto compacto, imagen compacto y marcos monótonos generales repletos, y estudiaremos las relaciones entre ellos. También probaremos que las nociones de marco monótono punto compacto, e imagen compacto se preservan bajo morfismos acotados fuertes.In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the { --;^; T}fragment of intuitionistic logic is the variety of implicative meetsemilattices, which are distributive semilattices. In this thesis we introduce and study the class of distributive meet-semilattices endowed with monotonic modal operators. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality (Stone style) for them. Also, we show how our new duality extends to some particular subclasses. So, most of the results given in this paper are applicable, with minor modi cations, to the study of bounded distributive lattices, implicative semilattices, Heyting algebras, and Boolean algebras with monotonic operators. We note that in the particular case of Boolean algebras our duality yields the duality given in [12] and [31]. Monotone modal logics have emerged in several application areas such as computer science and social choice theory. Using the developed duality, we study some extensions obtained from a semilattice based deductive system with monotonic modal operators. We give neighborhood semantics, and our main objective is to prove completeness with respect to a characteristic classes of monotonic frames. The variety of Boolean algebras with monotonic modal operators is dually equivalent to two classes of descriptive general monotonic frames. We shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall discuss some classes of general monotonic neighborhood frames, such as the classes of point-compact, image compact and replete general m-frames, and we shall study the relationships between them. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms.Fil: Menchón, María Paula. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaCelani, Sergio2019-03-29info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/4558spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-29T13:42:11Zoai:repositorio.bc.uns.edu.ar:123456789/4558instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-29 13:42:11.94Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse |
dc.title.none.fl_str_mv |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
title |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
spellingShingle |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones Menchón, María Paula Matemáticas Topología Lógica modal Operadores modales Semirretículos distributivos Extensión canónica |
title_short |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
title_full |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
title_fullStr |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
title_full_unstemmed |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
title_sort |
Estudio de una dualidad topológica para semirretículos distributivos con operadores modales monótonos y sus aplicaciones |
dc.creator.none.fl_str_mv |
Menchón, María Paula |
author |
Menchón, María Paula |
author_facet |
Menchón, María Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Celani, Sergio |
dc.subject.none.fl_str_mv |
Matemáticas Topología Lógica modal Operadores modales Semirretículos distributivos Extensión canónica |
topic |
Matemáticas Topología Lógica modal Operadores modales Semirretículos distributivos Extensión canónica |
dc.description.none.fl_txt_mv |
En el estudio de las álgebras relacionadas a las lógicas no-clásicas, los semirretículos (distributivos) están siempre presentes. Por ejemplo, la semántica algebraica del fragmento{ --;^; T} de la lógica intuicionista modal es la variedad de los semirretículos implicativos, que son una clase especial de semirretículos distributivos. En esta tesis, introducimos y estudiamos la clase de semirretículos distributivos acotados dotados de operadores modales que cumplen con la condición de monotonía. Estudiamos una teoría de representación para estas álgebras usando las extensiones canónicas y desarrollamos una dualidad completa a través de espacios sober. Dichos resultados son aplicables, bajo modificaciones menores, al estudio de los retículos distributivos acotados, los semirretículos implicativos, las álgebras de Heyting y a las álgebras de Boole con operadores monótonos. Mostraremos cómo nuestra dualidad se extiende a algunos casos particulares. En el caso de las álgebras de Boole, nuestra dualidad incluye, como casos particulares, las dadas en [12] y [31]. Las lógicas modales monótonas han surgido en distintas áreas de aplicación, como por ejemplo, asociadas a ciertas sem anticas utilizadas en computación teórica e inteligencia artificial. Usando la dualidad desarrollada, estudiaremos algunas extensiones obtenidas a partir de un sistema deductivo basado en semirretículos con operadores modales monótonos. A estos sistemas deductivos los dotaremos de una semántica de entornos, y nuestro objetivo principal es probar la completitud de estas extensiones con respecto a una clase característica de marcos monótonos. La variedad de las álgebras de Boole con operadores modales monótonos es dualmente equivalente a dos clases de marcos monótonos generales descriptivos. Clarificaremos este fenómeno mostrando que existe una correspondencia biyectiva entre estas dos clases. Hablaremos sobre algunas clases de marcos de entornos monótonos generales, tales como las clases de punto compacto, imagen compacto y marcos monótonos generales repletos, y estudiaremos las relaciones entre ellos. También probaremos que las nociones de marco monótono punto compacto, e imagen compacto se preservan bajo morfismos acotados fuertes. In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the { --;^; T}fragment of intuitionistic logic is the variety of implicative meetsemilattices, which are distributive semilattices. In this thesis we introduce and study the class of distributive meet-semilattices endowed with monotonic modal operators. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality (Stone style) for them. Also, we show how our new duality extends to some particular subclasses. So, most of the results given in this paper are applicable, with minor modi cations, to the study of bounded distributive lattices, implicative semilattices, Heyting algebras, and Boolean algebras with monotonic operators. We note that in the particular case of Boolean algebras our duality yields the duality given in [12] and [31]. Monotone modal logics have emerged in several application areas such as computer science and social choice theory. Using the developed duality, we study some extensions obtained from a semilattice based deductive system with monotonic modal operators. We give neighborhood semantics, and our main objective is to prove completeness with respect to a characteristic classes of monotonic frames. The variety of Boolean algebras with monotonic modal operators is dually equivalent to two classes of descriptive general monotonic frames. We shall clarify this phenomenon showing that there exists a bijective correspondence between these two classes. We shall discuss some classes of general monotonic neighborhood frames, such as the classes of point-compact, image compact and replete general m-frames, and we shall study the relationships between them. We shall also prove that the notions of point-compact, and image-compact monotonic frames are preserved by strong bounded morphisms. Fil: Menchón, María Paula. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
En el estudio de las álgebras relacionadas a las lógicas no-clásicas, los semirretículos (distributivos) están siempre presentes. Por ejemplo, la semántica algebraica del fragmento{ --;^; T} de la lógica intuicionista modal es la variedad de los semirretículos implicativos, que son una clase especial de semirretículos distributivos. En esta tesis, introducimos y estudiamos la clase de semirretículos distributivos acotados dotados de operadores modales que cumplen con la condición de monotonía. Estudiamos una teoría de representación para estas álgebras usando las extensiones canónicas y desarrollamos una dualidad completa a través de espacios sober. Dichos resultados son aplicables, bajo modificaciones menores, al estudio de los retículos distributivos acotados, los semirretículos implicativos, las álgebras de Heyting y a las álgebras de Boole con operadores monótonos. Mostraremos cómo nuestra dualidad se extiende a algunos casos particulares. En el caso de las álgebras de Boole, nuestra dualidad incluye, como casos particulares, las dadas en [12] y [31]. Las lógicas modales monótonas han surgido en distintas áreas de aplicación, como por ejemplo, asociadas a ciertas sem anticas utilizadas en computación teórica e inteligencia artificial. Usando la dualidad desarrollada, estudiaremos algunas extensiones obtenidas a partir de un sistema deductivo basado en semirretículos con operadores modales monótonos. A estos sistemas deductivos los dotaremos de una semántica de entornos, y nuestro objetivo principal es probar la completitud de estas extensiones con respecto a una clase característica de marcos monótonos. La variedad de las álgebras de Boole con operadores modales monótonos es dualmente equivalente a dos clases de marcos monótonos generales descriptivos. Clarificaremos este fenómeno mostrando que existe una correspondencia biyectiva entre estas dos clases. Hablaremos sobre algunas clases de marcos de entornos monótonos generales, tales como las clases de punto compacto, imagen compacto y marcos monótonos generales repletos, y estudiaremos las relaciones entre ellos. También probaremos que las nociones de marco monótono punto compacto, e imagen compacto se preservan bajo morfismos acotados fuertes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://repositoriodigital.uns.edu.ar/handle/123456789/4558 |
url |
http://repositoriodigital.uns.edu.ar/handle/123456789/4558 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) instname:Universidad Nacional del Sur |
reponame_str |
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) |
collection |
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) |
instname_str |
Universidad Nacional del Sur |
repository.name.fl_str_mv |
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur |
repository.mail.fl_str_mv |
mesnaola@uns.edu.ar |
_version_ |
1844619087584428032 |
score |
12.559606 |