New contributions to non linear process monitoring through kernel partial least squares
- Autores
- Vega, Jorge Ruben; Godoy, José Luis; Marchetti, Jacinto; Zumoffen, David
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes.
Fil: Vega, Jorge Ruben/ Universidad Tecnològica Nacional. Argentina
Peer Reviewed - Materia
-
nonlinear
process monitoring
Kernel Partial - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Tecnológica Nacional
- OAI Identificador
- oai:ria.utn.edu.ar:20.500.12272/3119
Ver los metadatos del registro completo
id |
RIAUTN_0c0f7347426da7ced10ef0f8e585a977 |
---|---|
oai_identifier_str |
oai:ria.utn.edu.ar:20.500.12272/3119 |
network_acronym_str |
RIAUTN |
repository_id_str |
a |
network_name_str |
Repositorio Institucional Abierto (UTN) |
spelling |
New contributions to non linear process monitoring through kernel partial least squaresVega, Jorge RubenGodoy, José LuisMarchetti, JacintoZumoffen, Davidnonlinearprocess monitoringKernel PartialThe kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes.Fil: Vega, Jorge Ruben/ Universidad Tecnològica Nacional. ArgentinaPeer Reviewed2018-09-14T22:08:31Z2018-09-14T22:08:31Z2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/20.500.12272/3119engTécnicas numéricas de estimación y optimización: aplicaciones en problemas de nanotecnologìa y de energía eléctrica,info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Condiciones de Uso libre desde su aprobación / aprobaciónAtribución-NoComercial-CompartirIgual 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-29T14:29:29Zoai:ria.utn.edu.ar:20.500.12272/3119instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-29 14:29:30.112Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse |
dc.title.none.fl_str_mv |
New contributions to non linear process monitoring through kernel partial least squares |
title |
New contributions to non linear process monitoring through kernel partial least squares |
spellingShingle |
New contributions to non linear process monitoring through kernel partial least squares Vega, Jorge Ruben nonlinear process monitoring Kernel Partial |
title_short |
New contributions to non linear process monitoring through kernel partial least squares |
title_full |
New contributions to non linear process monitoring through kernel partial least squares |
title_fullStr |
New contributions to non linear process monitoring through kernel partial least squares |
title_full_unstemmed |
New contributions to non linear process monitoring through kernel partial least squares |
title_sort |
New contributions to non linear process monitoring through kernel partial least squares |
dc.creator.none.fl_str_mv |
Vega, Jorge Ruben Godoy, José Luis Marchetti, Jacinto Zumoffen, David |
author |
Vega, Jorge Ruben |
author_facet |
Vega, Jorge Ruben Godoy, José Luis Marchetti, Jacinto Zumoffen, David |
author_role |
author |
author2 |
Godoy, José Luis Marchetti, Jacinto Zumoffen, David |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
nonlinear process monitoring Kernel Partial |
topic |
nonlinear process monitoring Kernel Partial |
dc.description.none.fl_txt_mv |
The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes. Fil: Vega, Jorge Ruben/ Universidad Tecnològica Nacional. Argentina Peer Reviewed |
description |
The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2018-09-14T22:08:31Z 2018-09-14T22:08:31Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12272/3119 |
url |
http://hdl.handle.net/20.500.12272/3119 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Técnicas numéricas de estimación y optimización: aplicaciones en problemas de nanotecnologìa y de energía eléctrica, |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso libre desde su aprobación / aprobación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso libre desde su aprobación / aprobación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Abierto (UTN) instname:Universidad Tecnológica Nacional |
reponame_str |
Repositorio Institucional Abierto (UTN) |
collection |
Repositorio Institucional Abierto (UTN) |
instname_str |
Universidad Tecnológica Nacional |
repository.name.fl_str_mv |
Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional |
repository.mail.fl_str_mv |
gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar |
_version_ |
1844621787424358400 |
score |
12.559606 |