Robust estimators in semi-functional partial linear regression models

Autores
Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Functional Data
Kernel Smoothers
Partial Linear Models
Robust Estimation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55556

id CONICETDig_6c61fc2efe36677ee2fac2522b33cdc3
oai_identifier_str oai:ri.conicet.gov.ar:11336/55556
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust estimators in semi-functional partial linear regression modelsBoente Boente, Graciela LinaVahnovan, Alejandra ValeriaFunctional DataKernel SmoothersPartial Linear ModelsRobust Estimationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55556Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-840047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2016.10.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X16301178?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:52Zoai:ri.conicet.gov.ar:11336/55556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:52.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust estimators in semi-functional partial linear regression models
title Robust estimators in semi-functional partial linear regression models
spellingShingle Robust estimators in semi-functional partial linear regression models
Boente Boente, Graciela Lina
Functional Data
Kernel Smoothers
Partial Linear Models
Robust Estimation
title_short Robust estimators in semi-functional partial linear regression models
title_full Robust estimators in semi-functional partial linear regression models
title_fullStr Robust estimators in semi-functional partial linear regression models
title_full_unstemmed Robust estimators in semi-functional partial linear regression models
title_sort Robust estimators in semi-functional partial linear regression models
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Vahnovan, Alejandra Valeria
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Vahnovan, Alejandra Valeria
author_role author
author2 Vahnovan, Alejandra Valeria
author2_role author
dc.subject.none.fl_str_mv Functional Data
Kernel Smoothers
Partial Linear Models
Robust Estimation
topic Functional Data
Kernel Smoothers
Partial Linear Models
Robust Estimation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55556
Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-84
0047-259X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55556
identifier_str_mv Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-84
0047-259X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2016.10.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X16301178?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269122392489984
score 13.13397