Robust estimators in semi-functional partial linear regression models
- Autores
- Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Functional Data
Kernel Smoothers
Partial Linear Models
Robust Estimation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55556
Ver los metadatos del registro completo
id |
CONICETDig_6c61fc2efe36677ee2fac2522b33cdc3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55556 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust estimators in semi-functional partial linear regression modelsBoente Boente, Graciela LinaVahnovan, Alejandra ValeriaFunctional DataKernel SmoothersPartial Linear ModelsRobust Estimationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55556Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-840047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2016.10.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X16301178?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:52Zoai:ri.conicet.gov.ar:11336/55556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:52.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust estimators in semi-functional partial linear regression models |
title |
Robust estimators in semi-functional partial linear regression models |
spellingShingle |
Robust estimators in semi-functional partial linear regression models Boente Boente, Graciela Lina Functional Data Kernel Smoothers Partial Linear Models Robust Estimation |
title_short |
Robust estimators in semi-functional partial linear regression models |
title_full |
Robust estimators in semi-functional partial linear regression models |
title_fullStr |
Robust estimators in semi-functional partial linear regression models |
title_full_unstemmed |
Robust estimators in semi-functional partial linear regression models |
title_sort |
Robust estimators in semi-functional partial linear regression models |
dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Vahnovan, Alejandra Valeria |
author |
Boente Boente, Graciela Lina |
author_facet |
Boente Boente, Graciela Lina Vahnovan, Alejandra Valeria |
author_role |
author |
author2 |
Vahnovan, Alejandra Valeria |
author2_role |
author |
dc.subject.none.fl_str_mv |
Functional Data Kernel Smoothers Partial Linear Models Robust Estimation |
topic |
Functional Data Kernel Smoothers Partial Linear Models Robust Estimation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers. Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Vahnovan, Alejandra Valeria. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Partial linear models have been adapted to deal with functional covariates to capture both the advantages of a semi-linear modelling and those of nonparametric modelling for functional data. It is easy to see that the estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. To solve the problem of atypical observations when the covariates of the nonparametric component are functional, robust estimates for the regression parameter and regression operator are introduced. Consistency results of the robust estimators and the asymptotic distribution of the regression parameter estimator are studied. The reported numerical experiments show that the resulting estimators have good robustness properties. The benefits of considering robust estimators is also illustrated on a real data set where the robust fit reveals the presence of influential outliers. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55556 Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-84 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55556 |
identifier_str_mv |
Boente Boente, Graciela Lina; Vahnovan, Alejandra Valeria; Robust estimators in semi-functional partial linear regression models; Elsevier Inc; Journal Of Multivariate Analysis; 154; 2-2017; 59-84 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2016.10.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X16301178?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269122392489984 |
score |
13.13397 |