Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage
- Autores
- Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new second-order multivariate calibration model is presented which allows one to process matrix data showing a non-linear relationship between signal and concentration, and achieving the important second-order advantage. The latter property permits analyte quantitation even in the presence of unexpected sample components, i.e., those not present in the calibration set. The model is based on a combination of residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis functions. Simulations concerning two ideal systems are analyzed: one where the signal-concentration relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The results are favorably compared with those provided by several artificial neural network approaches. Two experimental systems are also studied, involving the analysis of: 1) the lipid degradation product malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2) the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for these experimental cases are also encouraging.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina - Materia
-
KERNEL PARTIAL LEAST-SQUARES
RESIDUAL BILINEARIZATION
SECOND-ORDER ADVANTAGE
SECOND-ORDER CALIBRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/133271
Ver los metadatos del registro completo
id |
CONICETDig_8dc4c5c10b5dbef36940b695d8f60ee8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/133271 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantageGarcia Reiriz, Alejandro GabrielDamiani, Patricia CeciliaOlivieri, Alejandro CesarKERNEL PARTIAL LEAST-SQUARESRESIDUAL BILINEARIZATIONSECOND-ORDER ADVANTAGESECOND-ORDER CALIBRATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new second-order multivariate calibration model is presented which allows one to process matrix data showing a non-linear relationship between signal and concentration, and achieving the important second-order advantage. The latter property permits analyte quantitation even in the presence of unexpected sample components, i.e., those not present in the calibration set. The model is based on a combination of residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis functions. Simulations concerning two ideal systems are analyzed: one where the signal-concentration relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The results are favorably compared with those provided by several artificial neural network approaches. Two experimental systems are also studied, involving the analysis of: 1) the lipid degradation product malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2) the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for these experimental cases are also encouraging.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaElsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133271Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 100; 2; 2-2010; 127-1350169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743909002093info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2009.11.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:47Zoai:ri.conicet.gov.ar:11336/133271instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:47.522CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
title |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
spellingShingle |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage Garcia Reiriz, Alejandro Gabriel KERNEL PARTIAL LEAST-SQUARES RESIDUAL BILINEARIZATION SECOND-ORDER ADVANTAGE SECOND-ORDER CALIBRATION |
title_short |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
title_full |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
title_fullStr |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
title_full_unstemmed |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
title_sort |
Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage |
dc.creator.none.fl_str_mv |
Garcia Reiriz, Alejandro Gabriel Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author |
Garcia Reiriz, Alejandro Gabriel |
author_facet |
Garcia Reiriz, Alejandro Gabriel Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Damiani, Patricia Cecilia Olivieri, Alejandro Cesar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
KERNEL PARTIAL LEAST-SQUARES RESIDUAL BILINEARIZATION SECOND-ORDER ADVANTAGE SECOND-ORDER CALIBRATION |
topic |
KERNEL PARTIAL LEAST-SQUARES RESIDUAL BILINEARIZATION SECOND-ORDER ADVANTAGE SECOND-ORDER CALIBRATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new second-order multivariate calibration model is presented which allows one to process matrix data showing a non-linear relationship between signal and concentration, and achieving the important second-order advantage. The latter property permits analyte quantitation even in the presence of unexpected sample components, i.e., those not present in the calibration set. The model is based on a combination of residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis functions. Simulations concerning two ideal systems are analyzed: one where the signal-concentration relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The results are favorably compared with those provided by several artificial neural network approaches. Two experimental systems are also studied, involving the analysis of: 1) the lipid degradation product malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2) the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for these experimental cases are also encouraging. Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina |
description |
A new second-order multivariate calibration model is presented which allows one to process matrix data showing a non-linear relationship between signal and concentration, and achieving the important second-order advantage. The latter property permits analyte quantitation even in the presence of unexpected sample components, i.e., those not present in the calibration set. The model is based on a combination of residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis functions. Simulations concerning two ideal systems are analyzed: one where the signal-concentration relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The results are favorably compared with those provided by several artificial neural network approaches. Two experimental systems are also studied, involving the analysis of: 1) the lipid degradation product malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2) the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for these experimental cases are also encouraging. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/133271 Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 100; 2; 2-2010; 127-135 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/133271 |
identifier_str_mv |
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Residual bilinearization combined with kernel-unfolded partial least-squares: A new technique for processing non-linear second-order data achieving the second-order advantage; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 100; 2; 2-2010; 127-135 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743909002093 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2009.11.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269928696053760 |
score |
13.13397 |