Detecting dynamical changes in time series by using the Jensen Shannon divergence
- Autores
- Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá.
Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
http://aip.scitation.org/doi/10.1063/1.4999613
info:eu-repo/semantics/publishedVersion
Fil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá.
Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Otras Ciencias Físicas - Materia
-
Chaos
Noise
Jensen Shannon divergence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/553789
Ver los metadatos del registro completo
id |
RDUUNC_f7b5b5d68e91c802fcf08f7498ab1c7c |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/553789 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Detecting dynamical changes in time series by using the Jensen Shannon divergenceMateos, Diego MartínRiveaud, Leonardo EstebanLamberti, Pedro WalterChaosNoiseJensen Shannon divergenceFil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá.Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.http://aip.scitation.org/doi/10.1063/1.4999613info:eu-repo/semantics/publishedVersionFil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá.Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Otras Ciencias Físicashttps://orcid.org/0000-0002-1953-08752017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/octet-streamMateos, D. M., Riveaud, L. E. y Lamberti, P. W. (2017). Detecting dynamical changes in time series by using the Jensen Shannon divergence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27 (8), 083118. https://dx.doi.org/10.1063/1.49996131054-1500http://hdl.handle.net/11086/5537891089-7682https://dx.doi.org/10.1063/1.4999613enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-11T10:19:35Zoai:rdu.unc.edu.ar:11086/553789Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-11 10:19:35.229Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
spellingShingle |
Detecting dynamical changes in time series by using the Jensen Shannon divergence Mateos, Diego Martín Chaos Noise Jensen Shannon divergence |
title_short |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_full |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_fullStr |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_full_unstemmed |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_sort |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
dc.creator.none.fl_str_mv |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author |
Mateos, Diego Martín |
author_facet |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author_role |
author |
author2 |
Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-1953-0875 |
dc.subject.none.fl_str_mv |
Chaos Noise Jensen Shannon divergence |
topic |
Chaos Noise Jensen Shannon divergence |
dc.description.none.fl_txt_mv |
Fil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá. Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series. http://aip.scitation.org/doi/10.1063/1.4999613 info:eu-repo/semantics/publishedVersion Fil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá. Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Riveaud, Leonardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Otras Ciencias Físicas |
description |
Fil: Mateos, Diego Martín. University of Toronto. Hospital for Sick Children; Canadá. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Mateos, D. M., Riveaud, L. E. y Lamberti, P. W. (2017). Detecting dynamical changes in time series by using the Jensen Shannon divergence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27 (8), 083118. https://dx.doi.org/10.1063/1.4999613 1054-1500 http://hdl.handle.net/11086/553789 1089-7682 https://dx.doi.org/10.1063/1.4999613 |
identifier_str_mv |
Mateos, D. M., Riveaud, L. E. y Lamberti, P. W. (2017). Detecting dynamical changes in time series by using the Jensen Shannon divergence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27 (8), 083118. https://dx.doi.org/10.1063/1.4999613 1054-1500 1089-7682 |
url |
http://hdl.handle.net/11086/553789 https://dx.doi.org/10.1063/1.4999613 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842975220979204096 |
score |
12.993085 |