Detecting dynamical changes in time series by using the Jensen Shannon divergence

Autores
Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; Canadá
Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
Noise
Chaos
Distinguishability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/74669

id CONICETDig_fe9c2e63c16b46c56b5833c516f56d99
oai_identifier_str oai:ri.conicet.gov.ar:11336/74669
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Detecting dynamical changes in time series by using the Jensen Shannon divergenceMateos, Diego MartínRiveaud, Leonardo EstebanLamberti, Pedro WalterNoiseChaosDistinguishabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; CanadáFil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaAmerican Institute of Physics2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74669Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-20171054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999613info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999613info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:38Zoai:ri.conicet.gov.ar:11336/74669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:38.806CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Detecting dynamical changes in time series by using the Jensen Shannon divergence
title Detecting dynamical changes in time series by using the Jensen Shannon divergence
spellingShingle Detecting dynamical changes in time series by using the Jensen Shannon divergence
Mateos, Diego Martín
Noise
Chaos
Distinguishability
title_short Detecting dynamical changes in time series by using the Jensen Shannon divergence
title_full Detecting dynamical changes in time series by using the Jensen Shannon divergence
title_fullStr Detecting dynamical changes in time series by using the Jensen Shannon divergence
title_full_unstemmed Detecting dynamical changes in time series by using the Jensen Shannon divergence
title_sort Detecting dynamical changes in time series by using the Jensen Shannon divergence
dc.creator.none.fl_str_mv Mateos, Diego Martín
Riveaud, Leonardo Esteban
Lamberti, Pedro Walter
author Mateos, Diego Martín
author_facet Mateos, Diego Martín
Riveaud, Leonardo Esteban
Lamberti, Pedro Walter
author_role author
author2 Riveaud, Leonardo Esteban
Lamberti, Pedro Walter
author2_role author
author
dc.subject.none.fl_str_mv Noise
Chaos
Distinguishability
topic Noise
Chaos
Distinguishability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; Canadá
Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/74669
Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-2017
1054-1500
1089-7682
CONICET Digital
CONICET
url http://hdl.handle.net/11336/74669
identifier_str_mv Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-2017
1054-1500
1089-7682
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999613
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999613
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981128489664512
score 12.48226