Detecting dynamical changes in time series by using the Jensen Shannon divergence
- Autores
- Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; Canadá
Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
Noise
Chaos
Distinguishability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74669
Ver los metadatos del registro completo
id |
CONICETDig_fe9c2e63c16b46c56b5833c516f56d99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74669 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detecting dynamical changes in time series by using the Jensen Shannon divergenceMateos, Diego MartínRiveaud, Leonardo EstebanLamberti, Pedro WalterNoiseChaosDistinguishabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; CanadáFil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaAmerican Institute of Physics2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74669Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-20171054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999613info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999613info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:38Zoai:ri.conicet.gov.ar:11336/74669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:38.806CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
spellingShingle |
Detecting dynamical changes in time series by using the Jensen Shannon divergence Mateos, Diego Martín Noise Chaos Distinguishability |
title_short |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_full |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_fullStr |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_full_unstemmed |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
title_sort |
Detecting dynamical changes in time series by using the Jensen Shannon divergence |
dc.creator.none.fl_str_mv |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author |
Mateos, Diego Martín |
author_facet |
Mateos, Diego Martín Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author_role |
author |
author2 |
Riveaud, Leonardo Esteban Lamberti, Pedro Walter |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Noise Chaos Distinguishability |
topic |
Noise Chaos Distinguishability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series. Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. University Of Toronto. Hospital For Sick Children; Canadá Fil: Riveaud, Leonardo Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74669 Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-2017 1054-1500 1089-7682 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74669 |
identifier_str_mv |
Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Detecting dynamical changes in time series by using the Jensen Shannon divergence; American Institute of Physics; Chaos; 27; 8; 8-2017 1054-1500 1089-7682 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4999613 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4999613 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981128489664512 |
score |
12.48226 |