Monoparametric family of metrics derived from classical Jensen–Shannon divergence
- Autores
- Osán, Tristán Martín; Bussandri, Diego; Lamberti, Pedro Walter
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Jensen–Shannon divergence is a well known multi-purpose measure of dissimilarity between probability distributions. It has been proven that the square root of this quantity is a true metric in the sense that, in addition to the basic properties of a distance, it also satisfies the triangle inequality. In this work we extend this last result to prove that in fact it is possible to derive a monoparametric family of metrics from the classical Jensen–Shannon divergence. Motivated by our results, an application into the field of symbolic sequences segmentation is explored. Additionally, we analyze the possibility to extend this result into the quantum realm.
Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Bussandri, Diego. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina - Materia
-
Information Theory
Jensen-Shannon Divergence
Metrics
Quantum Distances - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65552
Ver los metadatos del registro completo
id |
CONICETDig_976986509f573f734450a6276fff4644 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65552 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monoparametric family of metrics derived from classical Jensen–Shannon divergenceOsán, Tristán MartínBussandri, DiegoLamberti, Pedro WalterInformation TheoryJensen-Shannon DivergenceMetricsQuantum Distanceshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Jensen–Shannon divergence is a well known multi-purpose measure of dissimilarity between probability distributions. It has been proven that the square root of this quantity is a true metric in the sense that, in addition to the basic properties of a distance, it also satisfies the triangle inequality. In this work we extend this last result to prove that in fact it is possible to derive a monoparametric family of metrics from the classical Jensen–Shannon divergence. Motivated by our results, an application into the field of symbolic sequences segmentation is explored. Additionally, we analyze the possibility to extend this result into the quantum realm.Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bussandri, Diego. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; ArgentinaElsevier Science2018-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65552Osán, Tristán Martín; Bussandri, Diego; Lamberti, Pedro Walter; Monoparametric family of metrics derived from classical Jensen–Shannon divergence; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 495; 1-4-2018; 336-3440378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117313225info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.12.073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:52Zoai:ri.conicet.gov.ar:11336/65552instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:52.917CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
title |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
spellingShingle |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence Osán, Tristán Martín Information Theory Jensen-Shannon Divergence Metrics Quantum Distances |
title_short |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
title_full |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
title_fullStr |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
title_full_unstemmed |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
title_sort |
Monoparametric family of metrics derived from classical Jensen–Shannon divergence |
dc.creator.none.fl_str_mv |
Osán, Tristán Martín Bussandri, Diego Lamberti, Pedro Walter |
author |
Osán, Tristán Martín |
author_facet |
Osán, Tristán Martín Bussandri, Diego Lamberti, Pedro Walter |
author_role |
author |
author2 |
Bussandri, Diego Lamberti, Pedro Walter |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Information Theory Jensen-Shannon Divergence Metrics Quantum Distances |
topic |
Information Theory Jensen-Shannon Divergence Metrics Quantum Distances |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Jensen–Shannon divergence is a well known multi-purpose measure of dissimilarity between probability distributions. It has been proven that the square root of this quantity is a true metric in the sense that, in addition to the basic properties of a distance, it also satisfies the triangle inequality. In this work we extend this last result to prove that in fact it is possible to derive a monoparametric family of metrics from the classical Jensen–Shannon divergence. Motivated by our results, an application into the field of symbolic sequences segmentation is explored. Additionally, we analyze the possibility to extend this result into the quantum realm. Fil: Osán, Tristán Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Bussandri, Diego. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina |
description |
Jensen–Shannon divergence is a well known multi-purpose measure of dissimilarity between probability distributions. It has been proven that the square root of this quantity is a true metric in the sense that, in addition to the basic properties of a distance, it also satisfies the triangle inequality. In this work we extend this last result to prove that in fact it is possible to derive a monoparametric family of metrics from the classical Jensen–Shannon divergence. Motivated by our results, an application into the field of symbolic sequences segmentation is explored. Additionally, we analyze the possibility to extend this result into the quantum realm. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65552 Osán, Tristán Martín; Bussandri, Diego; Lamberti, Pedro Walter; Monoparametric family of metrics derived from classical Jensen–Shannon divergence; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 495; 1-4-2018; 336-344 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65552 |
identifier_str_mv |
Osán, Tristán Martín; Bussandri, Diego; Lamberti, Pedro Walter; Monoparametric family of metrics derived from classical Jensen–Shannon divergence; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 495; 1-4-2018; 336-344 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117313225 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.12.073 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613044186906624 |
score |
13.070432 |