A method for continuous-range sequence analysis with jensen-shannon divergence
- Autores
- Re, Miguel Angel; Aguirre Varela, Guillermo Gabriel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mutual Information (MI) is a useful Information Theory tool for the recognition of mutual dependence between data sets. Several methods have been developed fore estimation of MI when both data sets are of the discrete type or when both are of the continuous type. However, MI estimation between a discrete range data set and a continuous range data set has not received so much attention. We therefore present here a method for the estimation of MI for this case, based on the kernel density approximation. This calculation may be of interest in diverse contexts. Since MI is closely related to the Jensen Shannon divergence, the method developed here is of particular interest in the problems of sequence segmentation and set comparisons.
Fil: Re, Miguel Angel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina
Fil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
ENTROPIC DISTANCE
SEQUENCE SEGMENTATION
JENSEN-SHANNON DIVERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172534
Ver los metadatos del registro completo
id |
CONICETDig_1951052b78470ed5aeecc3738b49957c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172534 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A method for continuous-range sequence analysis with jensen-shannon divergenceRe, Miguel AngelAguirre Varela, Guillermo GabrielENTROPIC DISTANCESEQUENCE SEGMENTATIONJENSEN-SHANNON DIVERGENCEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Mutual Information (MI) is a useful Information Theory tool for the recognition of mutual dependence between data sets. Several methods have been developed fore estimation of MI when both data sets are of the discrete type or when both are of the continuous type. However, MI estimation between a discrete range data set and a continuous range data set has not received so much attention. We therefore present here a method for the estimation of MI for this case, based on the kernel density approximation. This calculation may be of interest in diverse contexts. Since MI is closely related to the Jensen Shannon divergence, the method developed here is of particular interest in the problems of sequence segmentation and set comparisons.Fil: Re, Miguel Angel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; ArgentinaFil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaInstituto de Física de Líquidos y Sistemas Biológicos2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172534Re, Miguel Angel; Aguirre Varela, Guillermo Gabriel; A method for continuous-range sequence analysis with jensen-shannon divergence; Instituto de Física de Líquidos y Sistemas Biológicos; Papers In Physics; 13; 130001; 2-2021; 1-101852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/638info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.130001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:47Zoai:ri.conicet.gov.ar:11336/172534instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:48.242CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A method for continuous-range sequence analysis with jensen-shannon divergence |
title |
A method for continuous-range sequence analysis with jensen-shannon divergence |
spellingShingle |
A method for continuous-range sequence analysis with jensen-shannon divergence Re, Miguel Angel ENTROPIC DISTANCE SEQUENCE SEGMENTATION JENSEN-SHANNON DIVERGENCE |
title_short |
A method for continuous-range sequence analysis with jensen-shannon divergence |
title_full |
A method for continuous-range sequence analysis with jensen-shannon divergence |
title_fullStr |
A method for continuous-range sequence analysis with jensen-shannon divergence |
title_full_unstemmed |
A method for continuous-range sequence analysis with jensen-shannon divergence |
title_sort |
A method for continuous-range sequence analysis with jensen-shannon divergence |
dc.creator.none.fl_str_mv |
Re, Miguel Angel Aguirre Varela, Guillermo Gabriel |
author |
Re, Miguel Angel |
author_facet |
Re, Miguel Angel Aguirre Varela, Guillermo Gabriel |
author_role |
author |
author2 |
Aguirre Varela, Guillermo Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
ENTROPIC DISTANCE SEQUENCE SEGMENTATION JENSEN-SHANNON DIVERGENCE |
topic |
ENTROPIC DISTANCE SEQUENCE SEGMENTATION JENSEN-SHANNON DIVERGENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mutual Information (MI) is a useful Information Theory tool for the recognition of mutual dependence between data sets. Several methods have been developed fore estimation of MI when both data sets are of the discrete type or when both are of the continuous type. However, MI estimation between a discrete range data set and a continuous range data set has not received so much attention. We therefore present here a method for the estimation of MI for this case, based on the kernel density approximation. This calculation may be of interest in diverse contexts. Since MI is closely related to the Jensen Shannon divergence, the method developed here is of particular interest in the problems of sequence segmentation and set comparisons. Fil: Re, Miguel Angel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina Fil: Aguirre Varela, Guillermo Gabriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Física de la Atmosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
Mutual Information (MI) is a useful Information Theory tool for the recognition of mutual dependence between data sets. Several methods have been developed fore estimation of MI when both data sets are of the discrete type or when both are of the continuous type. However, MI estimation between a discrete range data set and a continuous range data set has not received so much attention. We therefore present here a method for the estimation of MI for this case, based on the kernel density approximation. This calculation may be of interest in diverse contexts. Since MI is closely related to the Jensen Shannon divergence, the method developed here is of particular interest in the problems of sequence segmentation and set comparisons. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172534 Re, Miguel Angel; Aguirre Varela, Guillermo Gabriel; A method for continuous-range sequence analysis with jensen-shannon divergence; Instituto de Física de Líquidos y Sistemas Biológicos; Papers In Physics; 13; 130001; 2-2021; 1-10 1852-4249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172534 |
identifier_str_mv |
Re, Miguel Angel; Aguirre Varela, Guillermo Gabriel; A method for continuous-range sequence analysis with jensen-shannon divergence; Instituto de Física de Líquidos y Sistemas Biológicos; Papers In Physics; 13; 130001; 2-2021; 1-10 1852-4249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/638 info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.130001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Física de Líquidos y Sistemas Biológicos |
publisher.none.fl_str_mv |
Instituto de Física de Líquidos y Sistemas Biológicos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614377526788096 |
score |
13.070432 |