SAnDReS 2.0: Development of machine-learning models to explore the scoring function space
- Autores
- de Azevedo, Walter Filgueira Jr.; Rodrigo, Quiroga; Villarreal, Marcos Ariel; Freitas da Silveira, Nelson José; Bitencourt-Ferreira, Gabriela; Duarte da Silva, Amauri; Veit-Acosta, Martina; Rufino Oliveira, Patricia; Tutone, Marco; Biziukova, Nadezhda; Poroikov, Vladimir; Tarasova, Olga; Baud, Stéphaine
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Factor de Impacto 2023: 3.4
Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil.
Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.
Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.
Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina
Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil.
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil.
Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA.
Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil.
Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France.
Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.
info:eu-repo/semantics/publishedVersion
Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil.
Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.
Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.
Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina
Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil.
Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil.
Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA.
Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil.
Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy.
Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia.
Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France. - Materia
-
Binding affinity
Crystal structure
Machine learning
Protein–ligand interactions
Scoring function space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/552524
Ver los metadatos del registro completo
id |
RDUUNC_350e1bbaca32c912f6e935da71cb4e3f |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/552524 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function spacede Azevedo, Walter Filgueira Jr.Rodrigo, QuirogaVillarreal, Marcos ArielFreitas da Silveira, Nelson JoséBitencourt-Ferreira, GabrielaDuarte da Silva, AmauriVeit-Acosta, MartinaRufino Oliveira, PatriciaTutone, MarcoBiziukova, NadezhdaPoroikov, VladimirTarasova, OlgaBaud, StéphaineBinding affinityCrystal structureMachine learningProtein–ligand interactionsScoring function spaceFactor de Impacto 2023: 3.4Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil.Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, ArgentinaFil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil.Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil.Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA.Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil.Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France.Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.info:eu-repo/semantics/publishedVersionFil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil.Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina.Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, ArgentinaFil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil.Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil.Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA.Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil.Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy.Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia.Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France.https://orcid.org/0000-0001-8640-357Xhttps://orcid.org/0000-0001-5015-0531https://orcid.org/0000-0001-8223-5193https://orcid.org/0000-0001-9257-7322https://orcid.org/0000-0002-3120-8256https://orcid.org/0000-0001-6395-458Xhttps://orcid.org/0000-0002-9203-3314https://orcid.org/0000-0002-1850-6670https://orcid.org/0000-0001-5059-8686https://orcid.org/0000-0002-2044-1327https://orcid.org/0000-0001-7937-2621https://orcid.org/0000-0002-3723-78322024-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfde Azevedo Jr, W. F., Quiroga, R., Villarreal, M. A., da Silveira, N. J. F., Bitencourt‐Ferreira, G., da Silva, A. D., ... & Baud, S. SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space. Journal of Computational Chemistry.http://hdl.handle.net/11086/5525241096-987Xhttps://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449https://pubmed.ncbi.nlm.nih.gov/38900052/DOI: 10.1002/jcc.27449enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:41:16Zoai:rdu.unc.edu.ar:11086/552524Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:41:16.962Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
title |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
spellingShingle |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space de Azevedo, Walter Filgueira Jr. Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space |
title_short |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
title_full |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
title_fullStr |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
title_full_unstemmed |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
title_sort |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
dc.creator.none.fl_str_mv |
de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine |
author |
de Azevedo, Walter Filgueira Jr. |
author_facet |
de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine |
author_role |
author |
author2 |
Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0001-8640-357X https://orcid.org/0000-0001-5015-0531 https://orcid.org/0000-0001-8223-5193 https://orcid.org/0000-0001-9257-7322 https://orcid.org/0000-0002-3120-8256 https://orcid.org/0000-0001-6395-458X https://orcid.org/0000-0002-9203-3314 https://orcid.org/0000-0002-1850-6670 https://orcid.org/0000-0001-5059-8686 https://orcid.org/0000-0002-2044-1327 https://orcid.org/0000-0001-7937-2621 https://orcid.org/0000-0002-3723-7832 |
dc.subject.none.fl_str_mv |
Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space |
topic |
Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space |
dc.description.none.fl_txt_mv |
Factor de Impacto 2023: 3.4 Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil. Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina. Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil. Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil. Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil. Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA. Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil. Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France. Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres. info:eu-repo/semantics/publishedVersion Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil. Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina. Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil. Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil. Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil. Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA. Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil. Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France. |
description |
Factor de Impacto 2023: 3.4 |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
de Azevedo Jr, W. F., Quiroga, R., Villarreal, M. A., da Silveira, N. J. F., Bitencourt‐Ferreira, G., da Silva, A. D., ... & Baud, S. SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space. Journal of Computational Chemistry. http://hdl.handle.net/11086/552524 1096-987X https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449 https://pubmed.ncbi.nlm.nih.gov/38900052/ DOI: 10.1002/jcc.27449 |
identifier_str_mv |
de Azevedo Jr, W. F., Quiroga, R., Villarreal, M. A., da Silveira, N. J. F., Bitencourt‐Ferreira, G., da Silva, A. D., ... & Baud, S. SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space. Journal of Computational Chemistry. 1096-987X DOI: 10.1002/jcc.27449 |
url |
http://hdl.handle.net/11086/552524 https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449 https://pubmed.ncbi.nlm.nih.gov/38900052/ |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618897259495424 |
score |
13.070432 |