Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto
- Autores
- Tamura, Karin Ayumi; Caro, Norma Patricia; Giampaoli, Viviana
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil.
Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil.
El desarrollo de métodos estadísticos para predecir la crisis financiera de las empresas constituye un verdadero aporte a la investigación científica. Estos métodos identifican posibles situaciones financieras desfavorables de las empresas, a través del comportamiento de sus indicadores contables. El estudio de la crisis empresarial consideró tres países latinoamericanos (Argentina, Chile y Perú) y fue desarrollado con 239 empresas observadas en el período 2003-2011, en que un 7% de ellas entran en crisis al año siguiente. El objetivo del estudio es predecir si una empresa presentará un estado de crisis en el próximo año, dado sus indicadores contables en los períodos anteriores. Fueron considerados los modelos logísticos tradicional y mixto. La base de datos fue dividida en dos, para construcción (muestra balanceada de empresas de 2003-2008) y para predicción futura (empresas de 2009-2011). El modelo mixto fue construido según los indicadores contables longitudinales; mientras el modelo tradicional consideró estos indicadores contables consolidados en el período histórico, por ejemplo, se trabajó con el promedio o variación histórica de la empresa. Los indicadores significativos para los modelos fueron: índice de rentabilidad y flujo de fondos. La tasa de clasificación correcta (1: crisis o 0: sanas) en la base de construcción fue aproximadamente un 83% para el modelo tradicional y un 94% para el modelo mixto. En la base de predicción futura, la predicción del modelo tradicional es sencilla, puesto que se puede utilizar la función logit. No obstante, como el modelo mixto incorpora los efectos aleatorios que son estimados individualmente para cada empresa, no es posible hacer la predicción directamente para el caso de que haya nuevas empresas, pues no se conocen sus valores de los efectos aleatorios. La literatura ha propuesto diversas maneras de hacer predicción, como por ejemplo, las metodologías naive, mejor predictor empírico, regresión lineal, regresión no paramétrica y vecinos más cercanos. La contribución de este trabajo es comparar la clasificación binaria realizada por el modelo logístico tradicional comparada con el modelo mixto para un período futuro. Se espera que las metodologías de predicción del modelo mixto presenten mejores resultados de clasificación, dado que este modelo considera los efectos aleatorios.
Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil.
Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil.
Estadística y Probabilidad - Materia
-
Logit
Modelos mixtos
Predicción futura
Clasificación binaria - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/28155
Ver los metadatos del registro completo
| id |
RDUUNC_a4e9fed25fedcd65f4cffba6eb569310 |
|---|---|
| oai_identifier_str |
oai:rdu.unc.edu.ar:11086/28155 |
| network_acronym_str |
RDUUNC |
| repository_id_str |
2572 |
| network_name_str |
Repositorio Digital Universitario (UNC) |
| spelling |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixtoTamura, Karin AyumiCaro, Norma PatriciaGiampaoli, VivianaLogitModelos mixtosPredicción futuraClasificación binariaFil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil.El desarrollo de métodos estadísticos para predecir la crisis financiera de las empresas constituye un verdadero aporte a la investigación científica. Estos métodos identifican posibles situaciones financieras desfavorables de las empresas, a través del comportamiento de sus indicadores contables. El estudio de la crisis empresarial consideró tres países latinoamericanos (Argentina, Chile y Perú) y fue desarrollado con 239 empresas observadas en el período 2003-2011, en que un 7% de ellas entran en crisis al año siguiente. El objetivo del estudio es predecir si una empresa presentará un estado de crisis en el próximo año, dado sus indicadores contables en los períodos anteriores. Fueron considerados los modelos logísticos tradicional y mixto. La base de datos fue dividida en dos, para construcción (muestra balanceada de empresas de 2003-2008) y para predicción futura (empresas de 2009-2011). El modelo mixto fue construido según los indicadores contables longitudinales; mientras el modelo tradicional consideró estos indicadores contables consolidados en el período histórico, por ejemplo, se trabajó con el promedio o variación histórica de la empresa. Los indicadores significativos para los modelos fueron: índice de rentabilidad y flujo de fondos. La tasa de clasificación correcta (1: crisis o 0: sanas) en la base de construcción fue aproximadamente un 83% para el modelo tradicional y un 94% para el modelo mixto. En la base de predicción futura, la predicción del modelo tradicional es sencilla, puesto que se puede utilizar la función logit. No obstante, como el modelo mixto incorpora los efectos aleatorios que son estimados individualmente para cada empresa, no es posible hacer la predicción directamente para el caso de que haya nuevas empresas, pues no se conocen sus valores de los efectos aleatorios. La literatura ha propuesto diversas maneras de hacer predicción, como por ejemplo, las metodologías naive, mejor predictor empírico, regresión lineal, regresión no paramétrica y vecinos más cercanos. La contribución de este trabajo es comparar la clasificación binaria realizada por el modelo logístico tradicional comparada con el modelo mixto para un período futuro. Se espera que las metodologías de predicción del modelo mixto presenten mejores resultados de clasificación, dado que este modelo considera los efectos aleatorios.Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil.Estadística y Probabilidad2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/11086/28155spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-23T11:19:14Zoai:rdu.unc.edu.ar:11086/28155Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-23 11:19:15.064Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
| dc.title.none.fl_str_mv |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| title |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| spellingShingle |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto Tamura, Karin Ayumi Logit Modelos mixtos Predicción futura Clasificación binaria |
| title_short |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| title_full |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| title_fullStr |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| title_full_unstemmed |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| title_sort |
Predicción de crisis financiera en empresas latinoamericanas usando modelos de regresión logística tradicional y mixto |
| dc.creator.none.fl_str_mv |
Tamura, Karin Ayumi Caro, Norma Patricia Giampaoli, Viviana |
| author |
Tamura, Karin Ayumi |
| author_facet |
Tamura, Karin Ayumi Caro, Norma Patricia Giampaoli, Viviana |
| author_role |
author |
| author2 |
Caro, Norma Patricia Giampaoli, Viviana |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Logit Modelos mixtos Predicción futura Clasificación binaria |
| topic |
Logit Modelos mixtos Predicción futura Clasificación binaria |
| dc.description.none.fl_txt_mv |
Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil. Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil. El desarrollo de métodos estadísticos para predecir la crisis financiera de las empresas constituye un verdadero aporte a la investigación científica. Estos métodos identifican posibles situaciones financieras desfavorables de las empresas, a través del comportamiento de sus indicadores contables. El estudio de la crisis empresarial consideró tres países latinoamericanos (Argentina, Chile y Perú) y fue desarrollado con 239 empresas observadas en el período 2003-2011, en que un 7% de ellas entran en crisis al año siguiente. El objetivo del estudio es predecir si una empresa presentará un estado de crisis en el próximo año, dado sus indicadores contables en los períodos anteriores. Fueron considerados los modelos logísticos tradicional y mixto. La base de datos fue dividida en dos, para construcción (muestra balanceada de empresas de 2003-2008) y para predicción futura (empresas de 2009-2011). El modelo mixto fue construido según los indicadores contables longitudinales; mientras el modelo tradicional consideró estos indicadores contables consolidados en el período histórico, por ejemplo, se trabajó con el promedio o variación histórica de la empresa. Los indicadores significativos para los modelos fueron: índice de rentabilidad y flujo de fondos. La tasa de clasificación correcta (1: crisis o 0: sanas) en la base de construcción fue aproximadamente un 83% para el modelo tradicional y un 94% para el modelo mixto. En la base de predicción futura, la predicción del modelo tradicional es sencilla, puesto que se puede utilizar la función logit. No obstante, como el modelo mixto incorpora los efectos aleatorios que son estimados individualmente para cada empresa, no es posible hacer la predicción directamente para el caso de que haya nuevas empresas, pues no se conocen sus valores de los efectos aleatorios. La literatura ha propuesto diversas maneras de hacer predicción, como por ejemplo, las metodologías naive, mejor predictor empírico, regresión lineal, regresión no paramétrica y vecinos más cercanos. La contribución de este trabajo es comparar la clasificación binaria realizada por el modelo logístico tradicional comparada con el modelo mixto para un período futuro. Se espera que las metodologías de predicción del modelo mixto presenten mejores resultados de clasificación, dado que este modelo considera los efectos aleatorios. Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil. Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Fil: Giampaoli, Viviana. Universidad de Sao Paulo; Brasil. Estadística y Probabilidad |
| description |
Fil: Tamura, Karin Ayumi. Universidad de Sao Paulo; Brasil. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/28155 |
| url |
http://hdl.handle.net/11086/28155 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
| reponame_str |
Repositorio Digital Universitario (UNC) |
| collection |
Repositorio Digital Universitario (UNC) |
| instname_str |
Universidad Nacional de Córdoba |
| instacron_str |
UNC |
| institution |
UNC |
| repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
| repository.mail.fl_str_mv |
oca.unc@gmail.com |
| _version_ |
1846785323768479744 |
| score |
12.982451 |