Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
- Autores
- Chiapparoli, Paula Mercedes
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Podestá, Ricardo Alberto
- Descripción
- Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos.
This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. - Materia
-
Códigos de Melas
Curvas elípticas
Sumas de Weil
Teorema de Delsarte
Espectro de códigos
Cyclic codes
Information and communication theory
Number theory
Exponential sums
Special algebraic curves and curves of low genus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/17503
Ver los metadatos del registro completo
id |
RDUUNC_a4c7772db87ffaa401b7c67541a659f2 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/17503 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicasChiapparoli, Paula MercedesCódigos de MelasCurvas elípticasSumas de WeilTeorema de DelsarteEspectro de códigosCyclic codesInformation and communication theoryNumber theoryExponential sumsSpecial algebraic curves and curves of low genusTesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos.This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new.Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Podestá, Ricardo Alberto2020info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/17503spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:44:27Zoai:rdu.unc.edu.ar:11086/17503Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:44:27.593Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
title |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
spellingShingle |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas Chiapparoli, Paula Mercedes Códigos de Melas Curvas elípticas Sumas de Weil Teorema de Delsarte Espectro de códigos Cyclic codes Information and communication theory Number theory Exponential sums Special algebraic curves and curves of low genus |
title_short |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
title_full |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
title_fullStr |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
title_full_unstemmed |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
title_sort |
Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas |
dc.creator.none.fl_str_mv |
Chiapparoli, Paula Mercedes |
author |
Chiapparoli, Paula Mercedes |
author_facet |
Chiapparoli, Paula Mercedes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Podestá, Ricardo Alberto |
dc.subject.none.fl_str_mv |
Códigos de Melas Curvas elípticas Sumas de Weil Teorema de Delsarte Espectro de códigos Cyclic codes Information and communication theory Number theory Exponential sums Special algebraic curves and curves of low genus |
topic |
Códigos de Melas Curvas elípticas Sumas de Weil Teorema de Delsarte Espectro de códigos Cyclic codes Information and communication theory Number theory Exponential sums Special algebraic curves and curves of low genus |
dc.description.none.fl_txt_mv |
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020. Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos. This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new. Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. |
description |
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/17503 |
url |
http://hdl.handle.net/11086/17503 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618982615678976 |
score |
13.070432 |