Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas

Autores
Chiapparoli, Paula Mercedes
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión publicada
Colaborador/a o director/a de tesis
Podestá, Ricardo Alberto
Descripción
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos.
This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Materia
Códigos de Melas
Curvas elípticas
Sumas de Weil
Teorema de Delsarte
Espectro de códigos
Cyclic codes
Information and communication theory
Number theory
Exponential sums
Special algebraic curves and curves of low genus
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/17503

id RDUUNC_a4c7772db87ffaa401b7c67541a659f2
oai_identifier_str oai:rdu.unc.edu.ar:11086/17503
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicasChiapparoli, Paula MercedesCódigos de MelasCurvas elípticasSumas de WeilTeorema de DelsarteEspectro de códigosCyclic codesInformation and communication theoryNumber theoryExponential sumsSpecial algebraic curves and curves of low genusTesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos.This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new.Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Podestá, Ricardo Alberto2020info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/17503spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:44:27Zoai:rdu.unc.edu.ar:11086/17503Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:44:27.593Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
title Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
spellingShingle Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
Chiapparoli, Paula Mercedes
Códigos de Melas
Curvas elípticas
Sumas de Weil
Teorema de Delsarte
Espectro de códigos
Cyclic codes
Information and communication theory
Number theory
Exponential sums
Special algebraic curves and curves of low genus
title_short Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
title_full Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
title_fullStr Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
title_full_unstemmed Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
title_sort Distribución de pesos de códigos cíclicos a partir de sumas exponenciales y curvas algebraicas
dc.creator.none.fl_str_mv Chiapparoli, Paula Mercedes
author Chiapparoli, Paula Mercedes
author_facet Chiapparoli, Paula Mercedes
author_role author
dc.contributor.none.fl_str_mv Podestá, Ricardo Alberto
dc.subject.none.fl_str_mv Códigos de Melas
Curvas elípticas
Sumas de Weil
Teorema de Delsarte
Espectro de códigos
Cyclic codes
Information and communication theory
Number theory
Exponential sums
Special algebraic curves and curves of low genus
topic Códigos de Melas
Curvas elípticas
Sumas de Weil
Teorema de Delsarte
Espectro de códigos
Cyclic codes
Information and communication theory
Number theory
Exponential sums
Special algebraic curves and curves of low genus
dc.description.none.fl_txt_mv Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Este trabajo trata sobre el espectro o distribución de pesos de códigos lineales y cíclicos. Esto es en general una tarea ardua y sólo se conoce el espectro de algunas familias de códigos. Estudiaremos distintas formas de encontrar dichas distribuciones de pesos a través de diferentes caminos. Primero veremos resultados generales para códigos lineales, que en particular dan una respuesta general al caso de los códigos MDS. Luego, nos enfocaremos en códigos cíclicos generales viéndolos como códigos traza (combinando los teoremas de Delsarte y las identidades de MacWilliams). A partir de aquí haremos uso de dos estrategias generales, una que involucra ciertas sumas exponenciales (Gauss, Weil y/o Kloosterman) y otra basada en el conteo de puntos racionales de curvas algebraicas asociadas a los códigos (típicamente de Artin-Schreier). Usaremos estas técnicas para obtener los espectros de familias de códigos muy conocidas como Hamming, BCH y Reed-Muller. Finalmente, aplicaremos estos métodos a dos familias de códigos menos conocidos como los códigos de Melas y de Zetterberg. En los casos binario y ternario, el cálculo de dichos espectros se puede realizar usando curvas elípticas y la traza de operadores de Hecke de ciertas formas modulares asociadas a ellas. El trabajo contiene numerosos ejemplos, muchos de ellos nuevos.
This work deals with the spectrum or weight distribution of linear and cyclic codes. This is in general a difficult task and the spectrum is only known for some families of codes. We will study different ways to find these distributions through different ways. We will first see general results for linear codes, which in particular give a general answer to the case of MDS codes. Then, we will focus on general cyclic codes by viewing them as trace codes (combining Delsarte's theorems and MacWilliams identities). From this point on we will use two general strategies, one that involves certain exponential sums (Gauss, Weil or Kloosterman) and another one based on counting the number of rational points of algebraic curves (typically Artin-Schreier) associated with the codes. We will use these techniques to obtain the spectra of well-known families of codes such as Hamming, BCH, and Reed-Muller codes. Finally, we will apply these methods to two lesser known code families, the Melas codes and the Zetterberg codes. In the binary and ternary cases, the computation of the mentioned spectra can be performed by using elliptic curves and the trace of Hecke operators of certain modular forms associated to them. The work contains several examples, many of them new.
Fil: Chiapparoli, Paula Mercedes. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
description Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/17503
url http://hdl.handle.net/11086/17503
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618982615678976
score 13.070432