Enumeration of Surfaces Containing an Elliptic Quartic Curve
- Autores
- Cukierman, Fernando Miguel; Lopez, A. F.; Vainsencher, I.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A very general surface of degree at least four in P 3 contains no curves other than intersections with surfaces. We find a formula for the degree of the locus of surfaces in P 3 of degree at least five which contain some elliptic quartic curve. We also compute the degree of the locus of quartic surfaces containing an elliptic quartic curve, a case not covered by that formula.
Fil: Cukierman, Fernando Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lopez, A. F.. Universita Di Roma; Italia
Fil: Vainsencher, I.. Universidade Federal do Minas Gerais; Brasil - Materia
-
Curva Eliptica
Teorema de Noether-Lefschetz - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18745
Ver los metadatos del registro completo
id |
CONICETDig_886770b61d7361cdfaa24140a9c9b421 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18745 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enumeration of Surfaces Containing an Elliptic Quartic CurveCukierman, Fernando MiguelLopez, A. F.Vainsencher, I.Curva ElipticaTeorema de Noether-Lefschetzhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A very general surface of degree at least four in P 3 contains no curves other than intersections with surfaces. We find a formula for the degree of the locus of surfaces in P 3 of degree at least five which contain some elliptic quartic curve. We also compute the degree of the locus of quartic surfaces containing an elliptic quartic curve, a case not covered by that formula.Fil: Cukierman, Fernando Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lopez, A. F.. Universita Di Roma; ItaliaFil: Vainsencher, I.. Universidade Federal do Minas Gerais; BrasilAmerican Mathematical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18745Cukierman, Fernando Miguel; Lopez, A. F.; Vainsencher, I.; Enumeration of Surfaces Containing an Elliptic Quartic Curve; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 10; 10-2014; 3305-33130002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1209.3335info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-11998-8info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-10/S0002-9939-2014-11998-8/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:30Zoai:ri.conicet.gov.ar:11336/18745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:30.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
title |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
spellingShingle |
Enumeration of Surfaces Containing an Elliptic Quartic Curve Cukierman, Fernando Miguel Curva Eliptica Teorema de Noether-Lefschetz |
title_short |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
title_full |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
title_fullStr |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
title_full_unstemmed |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
title_sort |
Enumeration of Surfaces Containing an Elliptic Quartic Curve |
dc.creator.none.fl_str_mv |
Cukierman, Fernando Miguel Lopez, A. F. Vainsencher, I. |
author |
Cukierman, Fernando Miguel |
author_facet |
Cukierman, Fernando Miguel Lopez, A. F. Vainsencher, I. |
author_role |
author |
author2 |
Lopez, A. F. Vainsencher, I. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Curva Eliptica Teorema de Noether-Lefschetz |
topic |
Curva Eliptica Teorema de Noether-Lefschetz |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A very general surface of degree at least four in P 3 contains no curves other than intersections with surfaces. We find a formula for the degree of the locus of surfaces in P 3 of degree at least five which contain some elliptic quartic curve. We also compute the degree of the locus of quartic surfaces containing an elliptic quartic curve, a case not covered by that formula. Fil: Cukierman, Fernando Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lopez, A. F.. Universita Di Roma; Italia Fil: Vainsencher, I.. Universidade Federal do Minas Gerais; Brasil |
description |
A very general surface of degree at least four in P 3 contains no curves other than intersections with surfaces. We find a formula for the degree of the locus of surfaces in P 3 of degree at least five which contain some elliptic quartic curve. We also compute the degree of the locus of quartic surfaces containing an elliptic quartic curve, a case not covered by that formula. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18745 Cukierman, Fernando Miguel; Lopez, A. F.; Vainsencher, I.; Enumeration of Surfaces Containing an Elliptic Quartic Curve; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 10; 10-2014; 3305-3313 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18745 |
identifier_str_mv |
Cukierman, Fernando Miguel; Lopez, A. F.; Vainsencher, I.; Enumeration of Surfaces Containing an Elliptic Quartic Curve; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 10; 10-2014; 3305-3313 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1209.3335 info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-11998-8 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-10/S0002-9939-2014-11998-8/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082646245900288 |
score |
13.22299 |