Análisis armónico en nilvariedades

Autores
Gallo, Andrea Lilén
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Saal, Linda Victoria
Descripción
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Esta tesis se encuadra en el estudio del análisis armónico en pares de Gelfand de la forma (K,N), donde N es un grupo de Lie nilpotente y K es un subgrupo de automorfismos de N. En una primera parte trabajamos con una familia de pares de Gelfand (K,N) definida previamente por Jorge Lauret. Descomponemos la acción del producto semidirecto de K y N, sobre el espacio de funciones definidas sobre N de cuadrado integrable. Para estas familias, encontramos además la medida de Plancherel y la proyección sobre cada componente mediante las funciones esféricas asociadas al par. En el caso del grupo de Heisenberg se obtienen estos resultados para los pares de Gelfand asociados a cualquier K subgrupo de automorfismos del grupo de Heisenberg. Finalmente, nos avocamos al estudio de pares de Gelfand generalizados, es decir, a pares de Gelfand donde el subgrupo K no es necesariamente compacto. Un resultado clásico garantiza que si (K,N) es un par de Gelfand donde N es un grupo de Lie nilpotente y K subgrupo compacto de automorfismos de N, entonces N es a lo sumo 2-pasos nilpotente. En esta tesis, damos un ejemplo concreto de un par de Gelfand generalizado (K,N) donde N es un grupo de Lie 3-pasos nilpotente.
This thesis is part of the study of harmonic analysis in Gelfand pairs (K,N), where N is a nilpotent Lie group and K a subgroup of automorphisms of N. In the first part, we work with a family of Gelfand pairs (K,N) defined by Jorge Lauret. We decompose the action of the semidirect product of K and N in the space of square integrable functions defined on N. We also find the Plancherel measure and the projection over each component by using spherical functions associated to the pair. In the Heisenberg case we obtain similar results with every Gelfand pair associated with each automorphism subgroup of the Heisenberg group. Finally, we deal with the study of generalized Gelfand pairs, i.e when K is non-compact. A classic result assures that, if (K,N) is a Gelfand pair with N nilpotent and K compact then N is necessarily 2-step nilpotent. In this thesis, we give an explicit example of a generalized Gelfand pair (K,N) where N is a 3-step nilpotent Lie group.
Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Materia
Pares de Gelfand generalizados
Grupo de Lie nilpotente
Representación regular
Fórmula de inversión
Topological groups, Lie groups
Nilpotent and solvable Lie groups
Analysis on other specific Lie groups
Abstract harmonic analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/15949

id RDUUNC_6f5fca98907d3bbe983f010b2536603f
oai_identifier_str oai:rdu.unc.edu.ar:11086/15949
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Análisis armónico en nilvariedadesGallo, Andrea LilénPares de Gelfand generalizadosGrupo de Lie nilpotenteRepresentación regularFórmula de inversiónTopological groups, Lie groupsNilpotent and solvable Lie groupsAnalysis on other specific Lie groupsAbstract harmonic analysisTesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Esta tesis se encuadra en el estudio del análisis armónico en pares de Gelfand de la forma (K,N), donde N es un grupo de Lie nilpotente y K es un subgrupo de automorfismos de N. En una primera parte trabajamos con una familia de pares de Gelfand (K,N) definida previamente por Jorge Lauret. Descomponemos la acción del producto semidirecto de K y N, sobre el espacio de funciones definidas sobre N de cuadrado integrable. Para estas familias, encontramos además la medida de Plancherel y la proyección sobre cada componente mediante las funciones esféricas asociadas al par. En el caso del grupo de Heisenberg se obtienen estos resultados para los pares de Gelfand asociados a cualquier K subgrupo de automorfismos del grupo de Heisenberg. Finalmente, nos avocamos al estudio de pares de Gelfand generalizados, es decir, a pares de Gelfand donde el subgrupo K no es necesariamente compacto. Un resultado clásico garantiza que si (K,N) es un par de Gelfand donde N es un grupo de Lie nilpotente y K subgrupo compacto de automorfismos de N, entonces N es a lo sumo 2-pasos nilpotente. En esta tesis, damos un ejemplo concreto de un par de Gelfand generalizado (K,N) donde N es un grupo de Lie 3-pasos nilpotente.This thesis is part of the study of harmonic analysis in Gelfand pairs (K,N), where N is a nilpotent Lie group and K a subgroup of automorphisms of N. In the first part, we work with a family of Gelfand pairs (K,N) defined by Jorge Lauret. We decompose the action of the semidirect product of K and N in the space of square integrable functions defined on N. We also find the Plancherel measure and the projection over each component by using spherical functions associated to the pair. In the Heisenberg case we obtain similar results with every Gelfand pair associated with each automorphism subgroup of the Heisenberg group. Finally, we deal with the study of generalized Gelfand pairs, i.e when K is non-compact. A classic result assures that, if (K,N) is a Gelfand pair with N nilpotent and K compact then N is necessarily 2-step nilpotent. In this thesis, we give an explicit example of a generalized Gelfand pair (K,N) where N is a 3-step nilpotent Lie group.Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Saal, Linda Victoria2020-07info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/11086/15949spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-16T09:29:43Zoai:rdu.unc.edu.ar:11086/15949Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-16 09:29:43.931Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Análisis armónico en nilvariedades
title Análisis armónico en nilvariedades
spellingShingle Análisis armónico en nilvariedades
Gallo, Andrea Lilén
Pares de Gelfand generalizados
Grupo de Lie nilpotente
Representación regular
Fórmula de inversión
Topological groups, Lie groups
Nilpotent and solvable Lie groups
Analysis on other specific Lie groups
Abstract harmonic analysis
title_short Análisis armónico en nilvariedades
title_full Análisis armónico en nilvariedades
title_fullStr Análisis armónico en nilvariedades
title_full_unstemmed Análisis armónico en nilvariedades
title_sort Análisis armónico en nilvariedades
dc.creator.none.fl_str_mv Gallo, Andrea Lilén
author Gallo, Andrea Lilén
author_facet Gallo, Andrea Lilén
author_role author
dc.contributor.none.fl_str_mv Saal, Linda Victoria
dc.subject.none.fl_str_mv Pares de Gelfand generalizados
Grupo de Lie nilpotente
Representación regular
Fórmula de inversión
Topological groups, Lie groups
Nilpotent and solvable Lie groups
Analysis on other specific Lie groups
Abstract harmonic analysis
topic Pares de Gelfand generalizados
Grupo de Lie nilpotente
Representación regular
Fórmula de inversión
Topological groups, Lie groups
Nilpotent and solvable Lie groups
Analysis on other specific Lie groups
Abstract harmonic analysis
dc.description.none.fl_txt_mv Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Esta tesis se encuadra en el estudio del análisis armónico en pares de Gelfand de la forma (K,N), donde N es un grupo de Lie nilpotente y K es un subgrupo de automorfismos de N. En una primera parte trabajamos con una familia de pares de Gelfand (K,N) definida previamente por Jorge Lauret. Descomponemos la acción del producto semidirecto de K y N, sobre el espacio de funciones definidas sobre N de cuadrado integrable. Para estas familias, encontramos además la medida de Plancherel y la proyección sobre cada componente mediante las funciones esféricas asociadas al par. En el caso del grupo de Heisenberg se obtienen estos resultados para los pares de Gelfand asociados a cualquier K subgrupo de automorfismos del grupo de Heisenberg. Finalmente, nos avocamos al estudio de pares de Gelfand generalizados, es decir, a pares de Gelfand donde el subgrupo K no es necesariamente compacto. Un resultado clásico garantiza que si (K,N) es un par de Gelfand donde N es un grupo de Lie nilpotente y K subgrupo compacto de automorfismos de N, entonces N es a lo sumo 2-pasos nilpotente. En esta tesis, damos un ejemplo concreto de un par de Gelfand generalizado (K,N) donde N es un grupo de Lie 3-pasos nilpotente.
This thesis is part of the study of harmonic analysis in Gelfand pairs (K,N), where N is a nilpotent Lie group and K a subgroup of automorphisms of N. In the first part, we work with a family of Gelfand pairs (K,N) defined by Jorge Lauret. We decompose the action of the semidirect product of K and N in the space of square integrable functions defined on N. We also find the Plancherel measure and the projection over each component by using spherical functions associated to the pair. In the Heisenberg case we obtain similar results with every Gelfand pair associated with each automorphism subgroup of the Heisenberg group. Finally, we deal with the study of generalized Gelfand pairs, i.e when K is non-compact. A classic result assures that, if (K,N) is a Gelfand pair with N nilpotent and K compact then N is necessarily 2-step nilpotent. In this thesis, we give an explicit example of a generalized Gelfand pair (K,N) where N is a 3-step nilpotent Lie group.
Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
description Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2020.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/15949
url http://hdl.handle.net/11086/15949
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1846143364692443136
score 12.712165