On finite dimensional Nichols algebras of diagonal type
- Autores
- Andruskiewitsch, Nicolás; Angiono, Iván Ezequiel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation.
info:eu-repo/semantics/publishedVersion
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura - Materia
-
Nichols algebras
Quantum groups
Weyl groupoid
Modular Lie algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/553004
Ver los metadatos del registro completo
id |
RDUUNC_418811b4031a0956a3529f31bbb43ff3 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/553004 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
On finite dimensional Nichols algebras of diagonal typeAndruskiewitsch, NicolásAngiono, Iván EzequielNichols algebrasQuantum groupsWeyl groupoidModular Lie algebrasFil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation.info:eu-repo/semantics/publishedVersionFil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Matemática Purahttps://orcid.org/0000-0002-9163-5161https://orcid.org/0000-0001-8767-16482017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x1664-3607http://hdl.handle.net/11086/5530041664-3615https://doi.org/10.1007/s13373-017-0113-xenginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:32:53Zoai:rdu.unc.edu.ar:11086/553004Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:32:54.183Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
On finite dimensional Nichols algebras of diagonal type |
title |
On finite dimensional Nichols algebras of diagonal type |
spellingShingle |
On finite dimensional Nichols algebras of diagonal type Andruskiewitsch, Nicolás Nichols algebras Quantum groups Weyl groupoid Modular Lie algebras |
title_short |
On finite dimensional Nichols algebras of diagonal type |
title_full |
On finite dimensional Nichols algebras of diagonal type |
title_fullStr |
On finite dimensional Nichols algebras of diagonal type |
title_full_unstemmed |
On finite dimensional Nichols algebras of diagonal type |
title_sort |
On finite dimensional Nichols algebras of diagonal type |
dc.creator.none.fl_str_mv |
Andruskiewitsch, Nicolás Angiono, Iván Ezequiel |
author |
Andruskiewitsch, Nicolás |
author_facet |
Andruskiewitsch, Nicolás Angiono, Iván Ezequiel |
author_role |
author |
author2 |
Angiono, Iván Ezequiel |
author2_role |
author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-9163-5161 https://orcid.org/0000-0001-8767-1648 |
dc.subject.none.fl_str_mv |
Nichols algebras Quantum groups Weyl groupoid Modular Lie algebras |
topic |
Nichols algebras Quantum groups Weyl groupoid Modular Lie algebras |
dc.description.none.fl_txt_mv |
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory. The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation. info:eu-repo/semantics/publishedVersion Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Matemática Pura |
description |
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Andruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x 1664-3607 http://hdl.handle.net/11086/553004 1664-3615 https://doi.org/10.1007/s13373-017-0113-x |
identifier_str_mv |
Andruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x 1664-3607 1664-3615 |
url |
http://hdl.handle.net/11086/553004 https://doi.org/10.1007/s13373-017-0113-x |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842349650523193344 |
score |
13.13397 |