On finite dimensional Nichols algebras of diagonal type

Autores
Andruskiewitsch, Nicolás; Angiono, Iván Ezequiel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation.
info:eu-repo/semantics/publishedVersion
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura
Materia
Nichols algebras
Quantum groups
Weyl groupoid
Modular Lie algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/553004

id RDUUNC_418811b4031a0956a3529f31bbb43ff3
oai_identifier_str oai:rdu.unc.edu.ar:11086/553004
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling On finite dimensional Nichols algebras of diagonal typeAndruskiewitsch, NicolásAngiono, Iván EzequielNichols algebrasQuantum groupsWeyl groupoidModular Lie algebrasFil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation.info:eu-repo/semantics/publishedVersionFil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Matemática Purahttps://orcid.org/0000-0002-9163-5161https://orcid.org/0000-0001-8767-16482017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x1664-3607http://hdl.handle.net/11086/5530041664-3615https://doi.org/10.1007/s13373-017-0113-xenginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:32:53Zoai:rdu.unc.edu.ar:11086/553004Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:32:54.183Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv On finite dimensional Nichols algebras of diagonal type
title On finite dimensional Nichols algebras of diagonal type
spellingShingle On finite dimensional Nichols algebras of diagonal type
Andruskiewitsch, Nicolás
Nichols algebras
Quantum groups
Weyl groupoid
Modular Lie algebras
title_short On finite dimensional Nichols algebras of diagonal type
title_full On finite dimensional Nichols algebras of diagonal type
title_fullStr On finite dimensional Nichols algebras of diagonal type
title_full_unstemmed On finite dimensional Nichols algebras of diagonal type
title_sort On finite dimensional Nichols algebras of diagonal type
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolás
Angiono, Iván Ezequiel
author Andruskiewitsch, Nicolás
author_facet Andruskiewitsch, Nicolás
Angiono, Iván Ezequiel
author_role author
author2 Angiono, Iván Ezequiel
author2_role author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0002-9163-5161
https://orcid.org/0000-0001-8767-1648
dc.subject.none.fl_str_mv Nichols algebras
Quantum groups
Weyl groupoid
Modular Lie algebras
topic Nichols algebras
Quantum groups
Weyl groupoid
Modular Lie algebras
dc.description.none.fl_txt_mv Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
The work of Nicolás Andruskiewitsch and Iván Angiono was partially supported by CONICET, Secyt (UNC), the MathAmSud Project GR2HOPF. The work of Iván Angiono was partially supported by ANPCyT (Foncyt). The work of Nicolás Andruskiewitsch, respectively Iván Angiono, was partially done during a visit to the University of Hamburg, respectively the MPI (Bonn), supported by the Alexander von Humboldt Foundation.
info:eu-repo/semantics/publishedVersion
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Andruskiewitsch, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Angiono, Iván Ezequiel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura
description Fil: Andruskiewitsch, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv Andruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x
1664-3607
http://hdl.handle.net/11086/553004
1664-3615
https://doi.org/10.1007/s13373-017-0113-x
identifier_str_mv Andruskiewitsch, N. y Angiono, I. E. (2017). On finite dimensional Nichols algebras of diagonal type. Bulletin of Mathematical Sciences, 7, 353-573. https://doi.org/10.1007/s13373-017-0113-x
1664-3607
1664-3615
url http://hdl.handle.net/11086/553004
https://doi.org/10.1007/s13373-017-0113-x
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349650523193344
score 13.13397