On finite dimensional Nichols algebras of diagonal type

Autores
Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
MODULAR LIE ALGEBRAS
NICHOLS ALGEBRAS
QUANTUM GROUPS
WEYL GROUPOID
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59909

id CONICETDig_0bae4e9703ce56384db85298bc639d5e
oai_identifier_str oai:ri.conicet.gov.ar:11336/59909
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On finite dimensional Nichols algebras of diagonal typeAndruskiewitsch, NicolasAngiono, Iván EzequielMODULAR LIE ALGEBRASNICHOLS ALGEBRASQUANTUM GROUPSWEYL GROUPOIDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringerOpen2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59909Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; On finite dimensional Nichols algebras of diagonal type; SpringerOpen; Bulletin of Mathematical Sciences; 7; 3; 12-2017; 353-5731664-36151664-3607CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13373-017-0113-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-017-0113-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:41Zoai:ri.conicet.gov.ar:11336/59909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:41.69CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On finite dimensional Nichols algebras of diagonal type
title On finite dimensional Nichols algebras of diagonal type
spellingShingle On finite dimensional Nichols algebras of diagonal type
Andruskiewitsch, Nicolas
MODULAR LIE ALGEBRAS
NICHOLS ALGEBRAS
QUANTUM GROUPS
WEYL GROUPOID
title_short On finite dimensional Nichols algebras of diagonal type
title_full On finite dimensional Nichols algebras of diagonal type
title_fullStr On finite dimensional Nichols algebras of diagonal type
title_full_unstemmed On finite dimensional Nichols algebras of diagonal type
title_sort On finite dimensional Nichols algebras of diagonal type
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolas
Angiono, Iván Ezequiel
author Andruskiewitsch, Nicolas
author_facet Andruskiewitsch, Nicolas
Angiono, Iván Ezequiel
author_role author
author2 Angiono, Iván Ezequiel
author2_role author
dc.subject.none.fl_str_mv MODULAR LIE ALGEBRAS
NICHOLS ALGEBRAS
QUANTUM GROUPS
WEYL GROUPOID
topic MODULAR LIE ALGEBRAS
NICHOLS ALGEBRAS
QUANTUM GROUPS
WEYL GROUPOID
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description This is a survey on Nichols algebras of diagonal type with finite dimension, or more generally with arithmetic root system. The knowledge of these algebras is the cornerstone of the classification program of pointed Hopf algebras with finite dimension, or finite Gelfand–Kirillov dimension; and their structure should be indispensable for the understanding of the representation theory, the computation of the various cohomologies, and many other aspects of finite dimensional pointed Hopf algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59–124, 2009) as a notable application of the notions of Weyl groupoid and generalized root system (Heckenberger in Invent Math 164:175–188, 2006; Heckenberger and Yamane in Math Z 259:255–276, 2008). In the first part of this monograph, we give an overview of the theory of Nichols algebras of diagonal type. This includes a discussion of the notion of generalized root system and its appearance in the contexts of Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and third part, we describe for each Nichols algebra in the list of Heckenberger (2009) the following basic information: the generalized root system; its label in terms of Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643–2671, 2015; J Reine Angew Math 683:189–251, 2013); the PBW-basis; the dimension or the Gelfand–Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et al. (Bull Belg Math Soc Simon Stevin 24(1):15–34, 2017). Indeed the second part deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary characteristic, while the third contains the information on Nichols algebras related to Lie algebras and superalgebras only in small characteristic, and the few examples yet unidentified in terms of Lie theory.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59909
Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; On finite dimensional Nichols algebras of diagonal type; SpringerOpen; Bulletin of Mathematical Sciences; 7; 3; 12-2017; 353-573
1664-3615
1664-3607
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59909
identifier_str_mv Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; On finite dimensional Nichols algebras of diagonal type; SpringerOpen; Bulletin of Mathematical Sciences; 7; 3; 12-2017; 353-573
1664-3615
1664-3607
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13373-017-0113-x
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-017-0113-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv SpringerOpen
publisher.none.fl_str_mv SpringerOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613344681525248
score 13.070432