Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba
- Autores
- Iglesias, Maximiliano; Stimolo, María Inés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
One of the main limitations for the correct analysis of the labor market in developing countries from a temporal variability approach is the lack of appropriate panel data information. The purpose of this article is to develop statistical methodologies that make it possible to incorporate the temporal dimension as a key factor to carry out the most complete possible analysis of the dynamics and structure of the problem under study, as well as the relationship between its multiple factors and determinants. The pseudo-panel approach allows overcoming the limitation of data availability through the building of synthetic panels and measuring the temporal evolution of characteristics of interest in cohorts of individuals and the building of “variables-trajectories”. The temporal clustering approach, based on the non-parametric k-means algorithm, combines content similarities and temporal adjacency in a single representation, which makes it possible to find cohort groups of homogeneous individuals in relation to the joint trajectories of their characteristics. With the results obtained according to the exploratory analysis, we could identify three well-defined groups based on the temporal trajectories of their informality rates and income levels.
Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Estadística y Probabilidad - Materia
-
Clúster longitudinal
Panel data
Labor informality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/552576
Ver los metadatos del registro completo
id |
RDUUNC_37913512cae1119d61246b7724ada6d8 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/552576 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran CórdobaIglesias, MaximilianoStimolo, María InésClúster longitudinalPanel dataLabor informalityFil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.One of the main limitations for the correct analysis of the labor market in developing countries from a temporal variability approach is the lack of appropriate panel data information. The purpose of this article is to develop statistical methodologies that make it possible to incorporate the temporal dimension as a key factor to carry out the most complete possible analysis of the dynamics and structure of the problem under study, as well as the relationship between its multiple factors and determinants. The pseudo-panel approach allows overcoming the limitation of data availability through the building of synthetic panels and measuring the temporal evolution of characteristics of interest in cohorts of individuals and the building of “variables-trajectories”. The temporal clustering approach, based on the non-parametric k-means algorithm, combines content similarities and temporal adjacency in a single representation, which makes it possible to find cohort groups of homogeneous individuals in relation to the joint trajectories of their characteristics. With the results obtained according to the exploratory analysis, we could identify three well-defined groups based on the temporal trajectories of their informality rates and income levels.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Estadística y Probabilidadhttps://orcid.org/0000-0002-8957-8321https://orcid.org/0000-0001-7277-16382019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf0327-9170http://hdl.handle.net/11086/552576enghttps://inmabb.conicet.gob.ar/publicaciones/actas-del-congreso-monteiro/15info:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:41:27Zoai:rdu.unc.edu.ar:11086/552576Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:41:28.045Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
title |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
spellingShingle |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba Iglesias, Maximiliano Clúster longitudinal Panel data Labor informality |
title_short |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
title_full |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
title_fullStr |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
title_full_unstemmed |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
title_sort |
Longitudinal analysis methodologies to determine profiles of informal workers from Gran Córdoba |
dc.creator.none.fl_str_mv |
Iglesias, Maximiliano Stimolo, María Inés |
author |
Iglesias, Maximiliano |
author_facet |
Iglesias, Maximiliano Stimolo, María Inés |
author_role |
author |
author2 |
Stimolo, María Inés |
author2_role |
author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-8957-8321 https://orcid.org/0000-0001-7277-1638 |
dc.subject.none.fl_str_mv |
Clúster longitudinal Panel data Labor informality |
topic |
Clúster longitudinal Panel data Labor informality |
dc.description.none.fl_txt_mv |
Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. One of the main limitations for the correct analysis of the labor market in developing countries from a temporal variability approach is the lack of appropriate panel data information. The purpose of this article is to develop statistical methodologies that make it possible to incorporate the temporal dimension as a key factor to carry out the most complete possible analysis of the dynamics and structure of the problem under study, as well as the relationship between its multiple factors and determinants. The pseudo-panel approach allows overcoming the limitation of data availability through the building of synthetic panels and measuring the temporal evolution of characteristics of interest in cohorts of individuals and the building of “variables-trajectories”. The temporal clustering approach, based on the non-parametric k-means algorithm, combines content similarities and temporal adjacency in a single representation, which makes it possible to find cohort groups of homogeneous individuals in relation to the joint trajectories of their characteristics. With the results obtained according to the exploratory analysis, we could identify three well-defined groups based on the temporal trajectories of their informality rates and income levels. Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Estadística y Probabilidad |
description |
Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
0327-9170 http://hdl.handle.net/11086/552576 |
identifier_str_mv |
0327-9170 |
url |
http://hdl.handle.net/11086/552576 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://inmabb.conicet.gob.ar/publicaciones/actas-del-congreso-monteiro/15 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618902289514497 |
score |
13.070432 |