Comprensión del número real en estudiantes de secundaria y universidad

Autores
Montoro, Virginia
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Scheuer, Nora
Padra, Claudio
Descripción
En esta tesis investigamos cómo comprenden el número real estudiantes de secundaria y de universidad. Situamos nuestro objeto de estudio analizando histórica y epistemológicamente la teoría matemática en torno al número real y el infinito matemático. Abordamos perspectivas cognitivas y educativas para dimensionar desafíos y sentidos que intervienen en las distintas concepciones estudiantiles. Trescientos siete estudiantes de los últimos años de secundaria y universitarios/as ingresantes o avanzados/as de carreras con distinta especificidad de estudios en Matemática respondieron a un cuestionario que indaga sobre: concepción de número y número irracional, la densidad, el orden de los números reales, el infinito en este entorno y la recta como representación de éstos. La integración de métodos cualitativos y estadísticos multivariados posibilitó construir un repertorio de respuestas, analizar sus relaciones e identificar siete modos de comprensión del número real, que interpretamos según un arco de amplitud y profundidad conceptual. Identificamos seis hitos que hacen notable la ampliación y profundización entre modos de comprensión. Éstos son, la incorporación de: la recta como representación de los números; la problemática de lo finito y lo discreto; la densidad potencialmente infinita y la comparación por inclusión; las magnitudes con discretitud y finitud intencional; el orden y la densidad potencial identificada con la continuidad; el infinito actual-cardinal y la completitud continuidad. Mostramos una progresión en las concepciones numéricas, desde la centralidad de los enteros como modelos de números, pasando por los racionales como decimales, a los reales como unión de racionales e irracionales. Si bien un mayor nivel de estudio matemático se asocia a una mayor amplitud y profundidad conceptual, en cada nivel de estudio se presentan una variedad de modos de respuesta. La excepción es el grupo de estudiantes avanzados/as de Matemática, que concentra los modos más cercanos a una visión matemática. Concluimos que conceptualizar el número real requiere de complejos procesos representacionales, comunicativos y semióticos en contextos educativos que propicien un alto grado de reflexión y explicitación matemáticas.
Fil: Montoro, Virginia. Universidad nacional del Comahue. Facultad de Ingeniería; Argentina.
Materia
Concepciones
Infinito matemático
Recta numérica
Número real
Ciencias Aplicadas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
Repositorio Digital Institucional (UNCo)
Institución
Universidad Nacional del Comahue
OAI Identificador
oai:rdi.uncoma.edu.ar:uncomaid/17555

id RDIUNCO_baf54c509dac44eea08d007a45ad2afc
oai_identifier_str oai:rdi.uncoma.edu.ar:uncomaid/17555
network_acronym_str RDIUNCO
repository_id_str 7108
network_name_str Repositorio Digital Institucional (UNCo)
spelling Comprensión del número real en estudiantes de secundaria y universidadMontoro, VirginiaConcepcionesInfinito matemáticoRecta numéricaNúmero realCiencias AplicadasEn esta tesis investigamos cómo comprenden el número real estudiantes de secundaria y de universidad. Situamos nuestro objeto de estudio analizando histórica y epistemológicamente la teoría matemática en torno al número real y el infinito matemático. Abordamos perspectivas cognitivas y educativas para dimensionar desafíos y sentidos que intervienen en las distintas concepciones estudiantiles. Trescientos siete estudiantes de los últimos años de secundaria y universitarios/as ingresantes o avanzados/as de carreras con distinta especificidad de estudios en Matemática respondieron a un cuestionario que indaga sobre: concepción de número y número irracional, la densidad, el orden de los números reales, el infinito en este entorno y la recta como representación de éstos. La integración de métodos cualitativos y estadísticos multivariados posibilitó construir un repertorio de respuestas, analizar sus relaciones e identificar siete modos de comprensión del número real, que interpretamos según un arco de amplitud y profundidad conceptual. Identificamos seis hitos que hacen notable la ampliación y profundización entre modos de comprensión. Éstos son, la incorporación de: la recta como representación de los números; la problemática de lo finito y lo discreto; la densidad potencialmente infinita y la comparación por inclusión; las magnitudes con discretitud y finitud intencional; el orden y la densidad potencial identificada con la continuidad; el infinito actual-cardinal y la completitud continuidad. Mostramos una progresión en las concepciones numéricas, desde la centralidad de los enteros como modelos de números, pasando por los racionales como decimales, a los reales como unión de racionales e irracionales. Si bien un mayor nivel de estudio matemático se asocia a una mayor amplitud y profundidad conceptual, en cada nivel de estudio se presentan una variedad de modos de respuesta. La excepción es el grupo de estudiantes avanzados/as de Matemática, que concentra los modos más cercanos a una visión matemática. Concluimos que conceptualizar el número real requiere de complejos procesos representacionales, comunicativos y semióticos en contextos educativos que propicien un alto grado de reflexión y explicitación matemáticas.Fil: Montoro, Virginia. Universidad nacional del Comahue. Facultad de Ingeniería; Argentina.Universidad Nacional del Comahue. Facultad de IngenieríaScheuer, NoraPadra, Claudio2022-12-22info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://rdi.uncoma.edu.ar/handle/uncomaid/17555spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:Repositorio Digital Institucional (UNCo)instname:Universidad Nacional del Comahue2025-09-11T10:49:11Zoai:rdi.uncoma.edu.ar:uncomaid/17555instacron:UNCoInstitucionalhttp://rdi.uncoma.edu.ar/Universidad públicaNo correspondehttp://rdi.uncoma.edu.ar/oaimirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:71082025-09-11 10:49:12.267Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahuefalse
dc.title.none.fl_str_mv Comprensión del número real en estudiantes de secundaria y universidad
title Comprensión del número real en estudiantes de secundaria y universidad
spellingShingle Comprensión del número real en estudiantes de secundaria y universidad
Montoro, Virginia
Concepciones
Infinito matemático
Recta numérica
Número real
Ciencias Aplicadas
title_short Comprensión del número real en estudiantes de secundaria y universidad
title_full Comprensión del número real en estudiantes de secundaria y universidad
title_fullStr Comprensión del número real en estudiantes de secundaria y universidad
title_full_unstemmed Comprensión del número real en estudiantes de secundaria y universidad
title_sort Comprensión del número real en estudiantes de secundaria y universidad
dc.creator.none.fl_str_mv Montoro, Virginia
author Montoro, Virginia
author_facet Montoro, Virginia
author_role author
dc.contributor.none.fl_str_mv Scheuer, Nora
Padra, Claudio
dc.subject.none.fl_str_mv Concepciones
Infinito matemático
Recta numérica
Número real
Ciencias Aplicadas
topic Concepciones
Infinito matemático
Recta numérica
Número real
Ciencias Aplicadas
dc.description.none.fl_txt_mv En esta tesis investigamos cómo comprenden el número real estudiantes de secundaria y de universidad. Situamos nuestro objeto de estudio analizando histórica y epistemológicamente la teoría matemática en torno al número real y el infinito matemático. Abordamos perspectivas cognitivas y educativas para dimensionar desafíos y sentidos que intervienen en las distintas concepciones estudiantiles. Trescientos siete estudiantes de los últimos años de secundaria y universitarios/as ingresantes o avanzados/as de carreras con distinta especificidad de estudios en Matemática respondieron a un cuestionario que indaga sobre: concepción de número y número irracional, la densidad, el orden de los números reales, el infinito en este entorno y la recta como representación de éstos. La integración de métodos cualitativos y estadísticos multivariados posibilitó construir un repertorio de respuestas, analizar sus relaciones e identificar siete modos de comprensión del número real, que interpretamos según un arco de amplitud y profundidad conceptual. Identificamos seis hitos que hacen notable la ampliación y profundización entre modos de comprensión. Éstos son, la incorporación de: la recta como representación de los números; la problemática de lo finito y lo discreto; la densidad potencialmente infinita y la comparación por inclusión; las magnitudes con discretitud y finitud intencional; el orden y la densidad potencial identificada con la continuidad; el infinito actual-cardinal y la completitud continuidad. Mostramos una progresión en las concepciones numéricas, desde la centralidad de los enteros como modelos de números, pasando por los racionales como decimales, a los reales como unión de racionales e irracionales. Si bien un mayor nivel de estudio matemático se asocia a una mayor amplitud y profundidad conceptual, en cada nivel de estudio se presentan una variedad de modos de respuesta. La excepción es el grupo de estudiantes avanzados/as de Matemática, que concentra los modos más cercanos a una visión matemática. Concluimos que conceptualizar el número real requiere de complejos procesos representacionales, comunicativos y semióticos en contextos educativos que propicien un alto grado de reflexión y explicitación matemáticas.
Fil: Montoro, Virginia. Universidad nacional del Comahue. Facultad de Ingeniería; Argentina.
description En esta tesis investigamos cómo comprenden el número real estudiantes de secundaria y de universidad. Situamos nuestro objeto de estudio analizando histórica y epistemológicamente la teoría matemática en torno al número real y el infinito matemático. Abordamos perspectivas cognitivas y educativas para dimensionar desafíos y sentidos que intervienen en las distintas concepciones estudiantiles. Trescientos siete estudiantes de los últimos años de secundaria y universitarios/as ingresantes o avanzados/as de carreras con distinta especificidad de estudios en Matemática respondieron a un cuestionario que indaga sobre: concepción de número y número irracional, la densidad, el orden de los números reales, el infinito en este entorno y la recta como representación de éstos. La integración de métodos cualitativos y estadísticos multivariados posibilitó construir un repertorio de respuestas, analizar sus relaciones e identificar siete modos de comprensión del número real, que interpretamos según un arco de amplitud y profundidad conceptual. Identificamos seis hitos que hacen notable la ampliación y profundización entre modos de comprensión. Éstos son, la incorporación de: la recta como representación de los números; la problemática de lo finito y lo discreto; la densidad potencialmente infinita y la comparación por inclusión; las magnitudes con discretitud y finitud intencional; el orden y la densidad potencial identificada con la continuidad; el infinito actual-cardinal y la completitud continuidad. Mostramos una progresión en las concepciones numéricas, desde la centralidad de los enteros como modelos de números, pasando por los racionales como decimales, a los reales como unión de racionales e irracionales. Si bien un mayor nivel de estudio matemático se asocia a una mayor amplitud y profundidad conceptual, en cada nivel de estudio se presentan una variedad de modos de respuesta. La excepción es el grupo de estudiantes avanzados/as de Matemática, que concentra los modos más cercanos a una visión matemática. Concluimos que conceptualizar el número real requiere de complejos procesos representacionales, comunicativos y semióticos en contextos educativos que propicien un alto grado de reflexión y explicitación matemáticas.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-22
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://rdi.uncoma.edu.ar/handle/uncomaid/17555
url http://rdi.uncoma.edu.ar/handle/uncomaid/17555
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional del Comahue. Facultad de Ingeniería
publisher.none.fl_str_mv Universidad Nacional del Comahue. Facultad de Ingeniería
dc.source.none.fl_str_mv reponame:Repositorio Digital Institucional (UNCo)
instname:Universidad Nacional del Comahue
reponame_str Repositorio Digital Institucional (UNCo)
collection Repositorio Digital Institucional (UNCo)
instname_str Universidad Nacional del Comahue
repository.name.fl_str_mv Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahue
repository.mail.fl_str_mv mirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.ar
_version_ 1842976410371620864
score 12.993085