Biotechnology applied to cassava propagation in Argentina
- Autores
- Cavallero, Maria Ines; Medina, Ricardo Daniel; Hoyos, Rosa Elena; Cenoz, P.; Mroginski, Luis Amado
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Cassava is a staple food to millions of people in tropical and subtropical countries. Although it is traditionally cultivated from stem cuttings, which is a simple and inexpensive technique, this method presents serious problems such as low multiplication rates, difficulties to conserve stems, and dissemination of pests and diseases. Many of these problems would be solved through in vitro tissue culture. In this work, we evaluated the in vitro establishment and multiplication of 28 cassava clones of agronomic interest for the Northeastern Argentina, a boundary area for this crop. Since the transfer of in vitro plants to ex vitro conditions is a critical phase of micropropagation, we evaluated the effect of different acclimatization treatments on survival and growth parameters of plants (cv EC118) grown in a culture chamber. We also scored their field survival and performance by comparing them with plants obtained by the conventional planting technique. After disinfection, uninodal segment culture in Murashige and Skoog medium supplemented with 0.01 mg/L BAP + 0.01 mg/L NAA + 0.1 mg/L GA3 allowed the in vitro establishment of 100% of the clones and their subsequent multiplication. Cultures were maintained at 27º±2ºC with a 14 h photoperiod. During establishment, sprouting occurred in 100% of the clones and rooting in 93% of them; the remaining clones formed roots during the multiplication phase. Thirty days after multiplication, the plants presented significant differences in plant height, average number of nodes per plant and number of roots per plant. During acclimatization, five treatments were evaluated: three substrates (perlite, T1; sand + vermicompost, T2; commercial substrate composed of peat and perlite, T3), and two hydroponic treatments (tapwater, T4; Arnon and Hoagland nutrient solution, T5). Although in chamber growth conditions the acclimatized plants showed statistical differences in several growth parameters depending on the treatments, no differences were observed in the survival percentage. Shoot and root fresh and dry weight and leaf area were highest in T5 and lowest in T2 and T4. Field survival differed significantly between treatments, discriminating a group with high survival rates (T5: 73.3%, T3: 86.7%, and control treatment: 100%) and another with low survival rates (T2: 33.3%; T1: 35% and T4: 36.7%). At harvest, there were no significant differences in the total fresh weight. However, the percentage of biomass partitioned to roots was significantly higher in T3 and T5, which resulted in a higher tuberous roots yield than that of the control treatment.
EEA El Colorado
Fil: Cavallero, María Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; Argentina
Fil: Medina, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
Fil: Hoyos, Rosa Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; Argentina
Fil: Cenoz, P. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina
Fil: Mroginski, Luis Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina - Fuente
- Cassava: farming, uses, and economic impact / editor: Colleen M. Pace. Nova Science Publishers, 2012. p. 55-77
- Materia
-
Mandioca
Manihot esculenta
Biotecnología
Micropropagación
Variedades
Argentina
Cassava
Biotechnology
Micropropagation
Varieties
Yuca - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/8154
Ver los metadatos del registro completo
id |
INTADig_edfffc0bfd4d90ade59d40d7d15d137b |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/8154 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Biotechnology applied to cassava propagation in ArgentinaCavallero, Maria InesMedina, Ricardo DanielHoyos, Rosa ElenaCenoz, P.Mroginski, Luis AmadoMandiocaManihot esculentaBiotecnologíaMicropropagaciónVariedadesArgentinaCassavaBiotechnologyMicropropagationVarietiesYucaCassava is a staple food to millions of people in tropical and subtropical countries. Although it is traditionally cultivated from stem cuttings, which is a simple and inexpensive technique, this method presents serious problems such as low multiplication rates, difficulties to conserve stems, and dissemination of pests and diseases. Many of these problems would be solved through in vitro tissue culture. In this work, we evaluated the in vitro establishment and multiplication of 28 cassava clones of agronomic interest for the Northeastern Argentina, a boundary area for this crop. Since the transfer of in vitro plants to ex vitro conditions is a critical phase of micropropagation, we evaluated the effect of different acclimatization treatments on survival and growth parameters of plants (cv EC118) grown in a culture chamber. We also scored their field survival and performance by comparing them with plants obtained by the conventional planting technique. After disinfection, uninodal segment culture in Murashige and Skoog medium supplemented with 0.01 mg/L BAP + 0.01 mg/L NAA + 0.1 mg/L GA3 allowed the in vitro establishment of 100% of the clones and their subsequent multiplication. Cultures were maintained at 27º±2ºC with a 14 h photoperiod. During establishment, sprouting occurred in 100% of the clones and rooting in 93% of them; the remaining clones formed roots during the multiplication phase. Thirty days after multiplication, the plants presented significant differences in plant height, average number of nodes per plant and number of roots per plant. During acclimatization, five treatments were evaluated: three substrates (perlite, T1; sand + vermicompost, T2; commercial substrate composed of peat and perlite, T3), and two hydroponic treatments (tapwater, T4; Arnon and Hoagland nutrient solution, T5). Although in chamber growth conditions the acclimatized plants showed statistical differences in several growth parameters depending on the treatments, no differences were observed in the survival percentage. Shoot and root fresh and dry weight and leaf area were highest in T5 and lowest in T2 and T4. Field survival differed significantly between treatments, discriminating a group with high survival rates (T5: 73.3%, T3: 86.7%, and control treatment: 100%) and another with low survival rates (T2: 33.3%; T1: 35% and T4: 36.7%). At harvest, there were no significant differences in the total fresh weight. However, the percentage of biomass partitioned to roots was significantly higher in T3 and T5, which resulted in a higher tuberous roots yield than that of the control treatment.EEA El ColoradoFil: Cavallero, María Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; ArgentinaFil: Medina, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Hoyos, Rosa Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; ArgentinaFil: Cenoz, P. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; ArgentinaFil: Mroginski, Luis Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaNova Science Publishers2020-10-29T17:10:20Z2020-10-29T17:10:20Z2012info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/20.500.12123/8154978-1-61209-655-1Cassava: farming, uses, and economic impact / editor: Colleen M. Pace. Nova Science Publishers, 2012. p. 55-77reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:03Zoai:localhost:20.500.12123/8154instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:03.541INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Biotechnology applied to cassava propagation in Argentina |
title |
Biotechnology applied to cassava propagation in Argentina |
spellingShingle |
Biotechnology applied to cassava propagation in Argentina Cavallero, Maria Ines Mandioca Manihot esculenta Biotecnología Micropropagación Variedades Argentina Cassava Biotechnology Micropropagation Varieties Yuca |
title_short |
Biotechnology applied to cassava propagation in Argentina |
title_full |
Biotechnology applied to cassava propagation in Argentina |
title_fullStr |
Biotechnology applied to cassava propagation in Argentina |
title_full_unstemmed |
Biotechnology applied to cassava propagation in Argentina |
title_sort |
Biotechnology applied to cassava propagation in Argentina |
dc.creator.none.fl_str_mv |
Cavallero, Maria Ines Medina, Ricardo Daniel Hoyos, Rosa Elena Cenoz, P. Mroginski, Luis Amado |
author |
Cavallero, Maria Ines |
author_facet |
Cavallero, Maria Ines Medina, Ricardo Daniel Hoyos, Rosa Elena Cenoz, P. Mroginski, Luis Amado |
author_role |
author |
author2 |
Medina, Ricardo Daniel Hoyos, Rosa Elena Cenoz, P. Mroginski, Luis Amado |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Mandioca Manihot esculenta Biotecnología Micropropagación Variedades Argentina Cassava Biotechnology Micropropagation Varieties Yuca |
topic |
Mandioca Manihot esculenta Biotecnología Micropropagación Variedades Argentina Cassava Biotechnology Micropropagation Varieties Yuca |
dc.description.none.fl_txt_mv |
Cassava is a staple food to millions of people in tropical and subtropical countries. Although it is traditionally cultivated from stem cuttings, which is a simple and inexpensive technique, this method presents serious problems such as low multiplication rates, difficulties to conserve stems, and dissemination of pests and diseases. Many of these problems would be solved through in vitro tissue culture. In this work, we evaluated the in vitro establishment and multiplication of 28 cassava clones of agronomic interest for the Northeastern Argentina, a boundary area for this crop. Since the transfer of in vitro plants to ex vitro conditions is a critical phase of micropropagation, we evaluated the effect of different acclimatization treatments on survival and growth parameters of plants (cv EC118) grown in a culture chamber. We also scored their field survival and performance by comparing them with plants obtained by the conventional planting technique. After disinfection, uninodal segment culture in Murashige and Skoog medium supplemented with 0.01 mg/L BAP + 0.01 mg/L NAA + 0.1 mg/L GA3 allowed the in vitro establishment of 100% of the clones and their subsequent multiplication. Cultures were maintained at 27º±2ºC with a 14 h photoperiod. During establishment, sprouting occurred in 100% of the clones and rooting in 93% of them; the remaining clones formed roots during the multiplication phase. Thirty days after multiplication, the plants presented significant differences in plant height, average number of nodes per plant and number of roots per plant. During acclimatization, five treatments were evaluated: three substrates (perlite, T1; sand + vermicompost, T2; commercial substrate composed of peat and perlite, T3), and two hydroponic treatments (tapwater, T4; Arnon and Hoagland nutrient solution, T5). Although in chamber growth conditions the acclimatized plants showed statistical differences in several growth parameters depending on the treatments, no differences were observed in the survival percentage. Shoot and root fresh and dry weight and leaf area were highest in T5 and lowest in T2 and T4. Field survival differed significantly between treatments, discriminating a group with high survival rates (T5: 73.3%, T3: 86.7%, and control treatment: 100%) and another with low survival rates (T2: 33.3%; T1: 35% and T4: 36.7%). At harvest, there were no significant differences in the total fresh weight. However, the percentage of biomass partitioned to roots was significantly higher in T3 and T5, which resulted in a higher tuberous roots yield than that of the control treatment. EEA El Colorado Fil: Cavallero, María Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; Argentina Fil: Medina, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina Fil: Hoyos, Rosa Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado; Argentina Fil: Cenoz, P. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina Fil: Mroginski, Luis Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina |
description |
Cassava is a staple food to millions of people in tropical and subtropical countries. Although it is traditionally cultivated from stem cuttings, which is a simple and inexpensive technique, this method presents serious problems such as low multiplication rates, difficulties to conserve stems, and dissemination of pests and diseases. Many of these problems would be solved through in vitro tissue culture. In this work, we evaluated the in vitro establishment and multiplication of 28 cassava clones of agronomic interest for the Northeastern Argentina, a boundary area for this crop. Since the transfer of in vitro plants to ex vitro conditions is a critical phase of micropropagation, we evaluated the effect of different acclimatization treatments on survival and growth parameters of plants (cv EC118) grown in a culture chamber. We also scored their field survival and performance by comparing them with plants obtained by the conventional planting technique. After disinfection, uninodal segment culture in Murashige and Skoog medium supplemented with 0.01 mg/L BAP + 0.01 mg/L NAA + 0.1 mg/L GA3 allowed the in vitro establishment of 100% of the clones and their subsequent multiplication. Cultures were maintained at 27º±2ºC with a 14 h photoperiod. During establishment, sprouting occurred in 100% of the clones and rooting in 93% of them; the remaining clones formed roots during the multiplication phase. Thirty days after multiplication, the plants presented significant differences in plant height, average number of nodes per plant and number of roots per plant. During acclimatization, five treatments were evaluated: three substrates (perlite, T1; sand + vermicompost, T2; commercial substrate composed of peat and perlite, T3), and two hydroponic treatments (tapwater, T4; Arnon and Hoagland nutrient solution, T5). Although in chamber growth conditions the acclimatized plants showed statistical differences in several growth parameters depending on the treatments, no differences were observed in the survival percentage. Shoot and root fresh and dry weight and leaf area were highest in T5 and lowest in T2 and T4. Field survival differed significantly between treatments, discriminating a group with high survival rates (T5: 73.3%, T3: 86.7%, and control treatment: 100%) and another with low survival rates (T2: 33.3%; T1: 35% and T4: 36.7%). At harvest, there were no significant differences in the total fresh weight. However, the percentage of biomass partitioned to roots was significantly higher in T3 and T5, which resulted in a higher tuberous roots yield than that of the control treatment. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2020-10-29T17:10:20Z 2020-10-29T17:10:20Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/8154 978-1-61209-655-1 |
url |
http://hdl.handle.net/20.500.12123/8154 |
identifier_str_mv |
978-1-61209-655-1 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Nova Science Publishers |
publisher.none.fl_str_mv |
Nova Science Publishers |
dc.source.none.fl_str_mv |
Cassava: farming, uses, and economic impact / editor: Colleen M. Pace. Nova Science Publishers, 2012. p. 55-77 reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619148471042048 |
score |
12.559606 |