Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes
- Autores
- Caballero, Gabriel; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Sanchez Angonova, Paolo Andres; Casella, Alejandra An; Orden, Luciano; Salinero-Delgado, Matías; Reyes-Muñoz, Pablo; Berger, Katja; Delegido, Jesús; Verrelst, Jochem
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions.
EEA Hilario Ascasubi
Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España
Fil: Salinero-Delgado, Matías. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Reyes-Muñoz, Pablo. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Berger, Katja. Mantle Labs GmbH; Austria
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España - Fuente
- Remote Sensing 15 (7) : 1822 (March 2023)
- Materia
-
Imágenes por Satélites
Indice de Vegetación
Contenido de Humedad
Teledetección
Nubes
Satellite Imagery
Vegetation Index
Moisture Content
Remote Sensing
Clouds
Sentinel-1
Sentinel-2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14389
Ver los metadatos del registro completo
id |
INTADig_da17aa5c031462af7be7c6d245fc42e4 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/14389 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian ProcessesCaballero, GabrielPezzola, Nestor AlejandroWinschel, Cristina InesSanchez Angonova, Paolo AndresCasella, Alejandra AnOrden, LucianoSalinero-Delgado, MatíasReyes-Muñoz, PabloBerger, KatjaDelegido, JesúsVerrelst, JochemImágenes por SatélitesIndice de VegetaciónContenido de HumedadTeledetecciónNubesSatellite ImageryVegetation IndexMoisture ContentRemote SensingCloudsSentinel-1Sentinel-2Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions.EEA Hilario AscasubiFil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; EspañaFil: Salinero-Delgado, Matías. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Reyes-Muñoz, Pablo. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Berger, Katja. Mantle Labs GmbH; AustriaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaMDPI2023-04-03T12:14:52Z2023-04-03T12:14:52Z2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14389https://www.mdpi.com/2072-4292/15/7/18222072-4292https://doi.org/10.3390/rs15071822Remote Sensing 15 (7) : 1822 (March 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:56Zoai:localhost:20.500.12123/14389instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:57.093INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
title |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
spellingShingle |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes Caballero, Gabriel Imágenes por Satélites Indice de Vegetación Contenido de Humedad Teledetección Nubes Satellite Imagery Vegetation Index Moisture Content Remote Sensing Clouds Sentinel-1 Sentinel-2 |
title_short |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
title_full |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
title_fullStr |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
title_full_unstemmed |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
title_sort |
Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes |
dc.creator.none.fl_str_mv |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Sanchez Angonova, Paolo Andres Casella, Alejandra An Orden, Luciano Salinero-Delgado, Matías Reyes-Muñoz, Pablo Berger, Katja Delegido, Jesús Verrelst, Jochem |
author |
Caballero, Gabriel |
author_facet |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Sanchez Angonova, Paolo Andres Casella, Alejandra An Orden, Luciano Salinero-Delgado, Matías Reyes-Muñoz, Pablo Berger, Katja Delegido, Jesús Verrelst, Jochem |
author_role |
author |
author2 |
Pezzola, Nestor Alejandro Winschel, Cristina Ines Sanchez Angonova, Paolo Andres Casella, Alejandra An Orden, Luciano Salinero-Delgado, Matías Reyes-Muñoz, Pablo Berger, Katja Delegido, Jesús Verrelst, Jochem |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Imágenes por Satélites Indice de Vegetación Contenido de Humedad Teledetección Nubes Satellite Imagery Vegetation Index Moisture Content Remote Sensing Clouds Sentinel-1 Sentinel-2 |
topic |
Imágenes por Satélites Indice de Vegetación Contenido de Humedad Teledetección Nubes Satellite Imagery Vegetation Index Moisture Content Remote Sensing Clouds Sentinel-1 Sentinel-2 |
dc.description.none.fl_txt_mv |
Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions. EEA Hilario Ascasubi Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España Fil: Salinero-Delgado, Matías. University of Valencia. Image Processing Laboratory (IPL); España Fil: Reyes-Muñoz, Pablo. University of Valencia. Image Processing Laboratory (IPL); España Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España Fil: Berger, Katja. Mantle Labs GmbH; Austria Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España |
description |
Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-03T12:14:52Z 2023-04-03T12:14:52Z 2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14389 https://www.mdpi.com/2072-4292/15/7/1822 2072-4292 https://doi.org/10.3390/rs15071822 |
url |
http://hdl.handle.net/20.500.12123/14389 https://www.mdpi.com/2072-4292/15/7/1822 https://doi.org/10.3390/rs15071822 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Remote Sensing 15 (7) : 1822 (March 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619175437271040 |
score |
12.559606 |