Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach
- Autores
- Pasqualotto, Nieves; D’Urso, Guido; Falanga Bolognesi, Salvatore; Belfiore, Oscar Rosario; Wittenberghe, Shari Van; Delegido, Jesús; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Moreno, José
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas.
EEA Hilario Ascasubi
Fil: Pasqualotto, Nieves. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fil: D’Urso, Guido. University of Naples Federico II. Department of Agricultural Sciences; Italia
Fil: Falanga Bolognesi, Salvatore. University of Napoli Federico II. ARIESPACE s.r.l.; Italia
Fil: Belfiore, Oscar Rosario. University of Napoli Federico II. ARIESPACE s.r.l.; Italia
Fil: Wittenberghe, Shari Van. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Moreno, José. Universidad de Valencia. Image Processing Laboratory (IPL); España - Fuente
- Agronomy 9 (10) : 663 (2019)
- Materia
-
Teledetección
Evapotranspiración
Indice de Vegetación
Índice de Superficie Foliar
Remote Sensing
Evapotranspiration
Vegetation Index
Leaf Area Index
Sentinel - 2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14758
Ver los metadatos del registro completo
id |
INTADig_fa858678d214fffd11588853440e4c63 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/14758 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor ApproachPasqualotto, NievesD’Urso, GuidoFalanga Bolognesi, SalvatoreBelfiore, Oscar RosarioWittenberghe, Shari VanDelegido, JesúsPezzola, Nestor AlejandroWinschel, Cristina InesMoreno, JoséTeledetecciónEvapotranspiraciónIndice de VegetaciónÍndice de Superficie FoliarRemote SensingEvapotranspirationVegetation IndexLeaf Area IndexSentinel - 2Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas.EEA Hilario AscasubiFil: Pasqualotto, Nieves. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaFil: D’Urso, Guido. University of Naples Federico II. Department of Agricultural Sciences; ItaliaFil: Falanga Bolognesi, Salvatore. University of Napoli Federico II. ARIESPACE s.r.l.; ItaliaFil: Belfiore, Oscar Rosario. University of Napoli Federico II. ARIESPACE s.r.l.; ItaliaFil: Wittenberghe, Shari Van. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Moreno, José. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaMDPI2023-07-17T12:37:47Z2023-07-17T12:37:47Z2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14758https://www.mdpi.com/2073-4395/9/10/6632073-4395https://doi.org/10.3390/agronomy9100663Agronomy 9 (10) : 663 (2019)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:18:23Zoai:localhost:20.500.12123/14758instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:18:23.628INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
title |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
spellingShingle |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach Pasqualotto, Nieves Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 |
title_short |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
title_full |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
title_fullStr |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
title_full_unstemmed |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
title_sort |
Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
dc.creator.none.fl_str_mv |
Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José |
author |
Pasqualotto, Nieves |
author_facet |
Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José |
author_role |
author |
author2 |
D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 |
topic |
Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 |
dc.description.none.fl_txt_mv |
Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas. EEA Hilario Ascasubi Fil: Pasqualotto, Nieves. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: D’Urso, Guido. University of Naples Federico II. Department of Agricultural Sciences; Italia Fil: Falanga Bolognesi, Salvatore. University of Napoli Federico II. ARIESPACE s.r.l.; Italia Fil: Belfiore, Oscar Rosario. University of Napoli Federico II. ARIESPACE s.r.l.; Italia Fil: Wittenberghe, Shari Van. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Moreno, José. Universidad de Valencia. Image Processing Laboratory (IPL); España |
description |
Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 2023-07-17T12:37:47Z 2023-07-17T12:37:47Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14758 https://www.mdpi.com/2073-4395/9/10/663 2073-4395 https://doi.org/10.3390/agronomy9100663 |
url |
http://hdl.handle.net/20.500.12123/14758 https://www.mdpi.com/2073-4395/9/10/663 https://doi.org/10.3390/agronomy9100663 |
identifier_str_mv |
2073-4395 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Agronomy 9 (10) : 663 (2019) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846787571318784000 |
score |
12.982451 |