Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
- Autores
- Silveira, Eduarda M.O.; Radeloff, Volker C.; Martinuzzi, Sebastián; Martinez Pastur, Guillermo J.; Bono, Julieta; Politi, Natalia; Lizarraga, Leónidas; Rivera, Luis O.; Ciuffoli, Lucía; Rosas, Yamina M.; Olah, Ashley M.; Gavier Pizarro, Gregorio Ignacio; Pidgeon, Anna M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
Instituto de Fisiología y Recursos Genéticos Vegetales
Fil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentina
Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentina
Fil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarca
Fil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina
Fil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos - Fuente
- Remote Sensing of Environment 285 : 113391 (February 2023)
- Materia
-
Bosques Primarios
Mapa
Área Basal
Ordenación Forestal
Conservación de Montes
Radar
Primary Forests
Maps
Basal Area
Forest Management
Forest Conservation
Native Forest
Vegetation Metrics
SAR Sentinel-1
Sentinel-2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/23183
Ver los metadatos del registro completo
id |
INTADig_7360225dc1cc7f4012cad589ddb874c1 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/23183 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagerySilveira, Eduarda M.O.Radeloff, Volker C.Martinuzzi, SebastiánMartinez Pastur, Guillermo J.Bono, JulietaPoliti, NataliaLizarraga, LeónidasRivera, Luis O.Ciuffoli, LucíaRosas, Yamina M.Olah, Ashley M.Gavier Pizarro, Gregorio IgnacioPidgeon, Anna M.Bosques PrimariosMapaÁrea BasalOrdenación ForestalConservación de MontesRadarPrimary ForestsMapsBasal AreaForest ManagementForest ConservationNative ForestVegetation MetricsSAR Sentinel-1Sentinel-2Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.Instituto de Fisiología y Recursos Genéticos VegetalesFil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); ArgentinaFil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; ArgentinaFil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); ArgentinaFil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; ArgentinaFil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); ArgentinaFil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; ArgentinaFil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; DinamarcaFil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; ArgentinaFil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosElsevier2025-07-25T18:08:43Z2025-07-25T18:08:43Z2023-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/23183https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub0034-4257 (impreso)1879-0704 (online)https://doi.org/10.1016/j.rse.2022.113391Remote Sensing of Environment 285 : 113391 (February 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:26Zoai:localhost:20.500.12123/23183instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:26.453INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
title |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
spellingShingle |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery Silveira, Eduarda M.O. Bosques Primarios Mapa Área Basal Ordenación Forestal Conservación de Montes Radar Primary Forests Maps Basal Area Forest Management Forest Conservation Native Forest Vegetation Metrics SAR Sentinel-1 Sentinel-2 |
title_short |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
title_full |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
title_fullStr |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
title_full_unstemmed |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
title_sort |
Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery |
dc.creator.none.fl_str_mv |
Silveira, Eduarda M.O. Radeloff, Volker C. Martinuzzi, Sebastián Martinez Pastur, Guillermo J. Bono, Julieta Politi, Natalia Lizarraga, Leónidas Rivera, Luis O. Ciuffoli, Lucía Rosas, Yamina M. Olah, Ashley M. Gavier Pizarro, Gregorio Ignacio Pidgeon, Anna M. |
author |
Silveira, Eduarda M.O. |
author_facet |
Silveira, Eduarda M.O. Radeloff, Volker C. Martinuzzi, Sebastián Martinez Pastur, Guillermo J. Bono, Julieta Politi, Natalia Lizarraga, Leónidas Rivera, Luis O. Ciuffoli, Lucía Rosas, Yamina M. Olah, Ashley M. Gavier Pizarro, Gregorio Ignacio Pidgeon, Anna M. |
author_role |
author |
author2 |
Radeloff, Volker C. Martinuzzi, Sebastián Martinez Pastur, Guillermo J. Bono, Julieta Politi, Natalia Lizarraga, Leónidas Rivera, Luis O. Ciuffoli, Lucía Rosas, Yamina M. Olah, Ashley M. Gavier Pizarro, Gregorio Ignacio Pidgeon, Anna M. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Bosques Primarios Mapa Área Basal Ordenación Forestal Conservación de Montes Radar Primary Forests Maps Basal Area Forest Management Forest Conservation Native Forest Vegetation Metrics SAR Sentinel-1 Sentinel-2 |
topic |
Bosques Primarios Mapa Área Basal Ordenación Forestal Conservación de Montes Radar Primary Forests Maps Basal Area Forest Management Forest Conservation Native Forest Vegetation Metrics SAR Sentinel-1 Sentinel-2 |
dc.description.none.fl_txt_mv |
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country. Instituto de Fisiología y Recursos Genéticos Vegetales Fil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos Fil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos Fil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos Fil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentina Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina Fil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina Fil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentina Fil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina Fil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina Fil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarca Fil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina Fil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos |
description |
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-01 2025-07-25T18:08:43Z 2025-07-25T18:08:43Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/23183 https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub 0034-4257 (impreso) 1879-0704 (online) https://doi.org/10.1016/j.rse.2022.113391 |
url |
http://hdl.handle.net/20.500.12123/23183 https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub https://doi.org/10.1016/j.rse.2022.113391 |
identifier_str_mv |
0034-4257 (impreso) 1879-0704 (online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Remote Sensing of Environment 285 : 113391 (February 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619206989971456 |
score |
12.559606 |