Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery

Autores
Silveira, Eduarda M.O.; Radeloff, Volker C.; Martinuzzi, Sebastián; Martinez Pastur, Guillermo J.; Bono, Julieta; Politi, Natalia; Lizarraga, Leónidas; Rivera, Luis O.; Ciuffoli, Lucía; Rosas, Yamina M.; Olah, Ashley M.; Gavier Pizarro, Gregorio Ignacio; Pidgeon, Anna M.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
Instituto de Fisiología y Recursos Genéticos Vegetales
Fil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentina
Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentina
Fil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarca
Fil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina
Fil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fuente
Remote Sensing of Environment 285 : 113391 (February 2023)
Materia
Bosques Primarios
Mapa
Área Basal
Ordenación Forestal
Conservación de Montes
Radar
Primary Forests
Maps
Basal Area
Forest Management
Forest Conservation
Native Forest
Vegetation Metrics
SAR Sentinel-1
Sentinel-2
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/23183

id INTADig_7360225dc1cc7f4012cad589ddb874c1
oai_identifier_str oai:localhost:20.500.12123/23183
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagerySilveira, Eduarda M.O.Radeloff, Volker C.Martinuzzi, SebastiánMartinez Pastur, Guillermo J.Bono, JulietaPoliti, NataliaLizarraga, LeónidasRivera, Luis O.Ciuffoli, LucíaRosas, Yamina M.Olah, Ashley M.Gavier Pizarro, Gregorio IgnacioPidgeon, Anna M.Bosques PrimariosMapaÁrea BasalOrdenación ForestalConservación de MontesRadarPrimary ForestsMapsBasal AreaForest ManagementForest ConservationNative ForestVegetation MetricsSAR Sentinel-1Sentinel-2Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.Instituto de Fisiología y Recursos Genéticos VegetalesFil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); ArgentinaFil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; ArgentinaFil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); ArgentinaFil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; ArgentinaFil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); ArgentinaFil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; ArgentinaFil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; DinamarcaFil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; ArgentinaFil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados UnidosElsevier2025-07-25T18:08:43Z2025-07-25T18:08:43Z2023-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/23183https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub0034-4257 (impreso)1879-0704 (online)https://doi.org/10.1016/j.rse.2022.113391Remote Sensing of Environment 285 : 113391 (February 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:26Zoai:localhost:20.500.12123/23183instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:26.453INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
title Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
spellingShingle Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
Silveira, Eduarda M.O.
Bosques Primarios
Mapa
Área Basal
Ordenación Forestal
Conservación de Montes
Radar
Primary Forests
Maps
Basal Area
Forest Management
Forest Conservation
Native Forest
Vegetation Metrics
SAR Sentinel-1
Sentinel-2
title_short Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
title_full Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
title_fullStr Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
title_full_unstemmed Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
title_sort Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery
dc.creator.none.fl_str_mv Silveira, Eduarda M.O.
Radeloff, Volker C.
Martinuzzi, Sebastián
Martinez Pastur, Guillermo J.
Bono, Julieta
Politi, Natalia
Lizarraga, Leónidas
Rivera, Luis O.
Ciuffoli, Lucía
Rosas, Yamina M.
Olah, Ashley M.
Gavier Pizarro, Gregorio Ignacio
Pidgeon, Anna M.
author Silveira, Eduarda M.O.
author_facet Silveira, Eduarda M.O.
Radeloff, Volker C.
Martinuzzi, Sebastián
Martinez Pastur, Guillermo J.
Bono, Julieta
Politi, Natalia
Lizarraga, Leónidas
Rivera, Luis O.
Ciuffoli, Lucía
Rosas, Yamina M.
Olah, Ashley M.
Gavier Pizarro, Gregorio Ignacio
Pidgeon, Anna M.
author_role author
author2 Radeloff, Volker C.
Martinuzzi, Sebastián
Martinez Pastur, Guillermo J.
Bono, Julieta
Politi, Natalia
Lizarraga, Leónidas
Rivera, Luis O.
Ciuffoli, Lucía
Rosas, Yamina M.
Olah, Ashley M.
Gavier Pizarro, Gregorio Ignacio
Pidgeon, Anna M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Bosques Primarios
Mapa
Área Basal
Ordenación Forestal
Conservación de Montes
Radar
Primary Forests
Maps
Basal Area
Forest Management
Forest Conservation
Native Forest
Vegetation Metrics
SAR Sentinel-1
Sentinel-2
topic Bosques Primarios
Mapa
Área Basal
Ordenación Forestal
Conservación de Montes
Radar
Primary Forests
Maps
Basal Area
Forest Management
Forest Conservation
Native Forest
Vegetation Metrics
SAR Sentinel-1
Sentinel-2
dc.description.none.fl_txt_mv Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
Instituto de Fisiología y Recursos Genéticos Vegetales
Fil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentina
Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentina
Fil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina
Fil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina
Fil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarca
Fil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina
Fil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos
description Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-01
2025-07-25T18:08:43Z
2025-07-25T18:08:43Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/23183
https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub
0034-4257 (impreso)
1879-0704 (online)
https://doi.org/10.1016/j.rse.2022.113391
url http://hdl.handle.net/20.500.12123/23183
https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub
https://doi.org/10.1016/j.rse.2022.113391
identifier_str_mv 0034-4257 (impreso)
1879-0704 (online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Remote Sensing of Environment 285 : 113391 (February 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619206989971456
score 12.559606