Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
- Autores
- Caballero, Gabriel; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Casella, Alejandra An; Sanchez Angonova, Paolo Andres; Orden, Luciano; Berger, Katja; Verrelst, Jochem; Delegido, Jesús
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.
EEA Hilario Ascasubi
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay
Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Berger, Katja. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España - Fuente
- Remote Sensing 14 (22) : 5867. (November 2022)
- Materia
-
Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/13525
Ver los metadatos del registro completo
id |
INTADig_e400428b2ba53d599bf72c07f6661d60 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/13525 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence AnglesCaballero, GabrielPezzola, Nestor AlejandroWinschel, Cristina InesCasella, Alejandra AnSanchez Angonova, Paolo AndresOrden, LucianoBerger, KatjaVerrelst, JochemDelegido, JesúsÍndice de Superficie FoliarTrigoInviernoImágenes por SatélitesRiegoLeaf Area IndexWheatWinterSatellite ImageryIrrigationSentinel-1Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.EEA Hilario AscasubiFil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; UruguayFil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; EspañaFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Berger, Katja. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaMDPI2022-12-02T14:29:02Z2022-12-02T14:29:02Z2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13525https://www.mdpi.com/2072-4292/14/22/58672072-4292https://doi.org/10.3390/rs14225867Remote Sensing 14 (22) : 5867. (November 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología AgropecuariaengArgentina .......... (nation) (World, South America)7006477info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:49Zoai:localhost:20.500.12123/13525instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:49.403INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
title |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
spellingShingle |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles Caballero, Gabriel Índice de Superficie Foliar Trigo Invierno Imágenes por Satélites Riego Leaf Area Index Wheat Winter Satellite Imagery Irrigation Sentinel-1 |
title_short |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
title_full |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
title_fullStr |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
title_full_unstemmed |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
title_sort |
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles |
dc.creator.none.fl_str_mv |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Orden, Luciano Berger, Katja Verrelst, Jochem Delegido, Jesús |
author |
Caballero, Gabriel |
author_facet |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Orden, Luciano Berger, Katja Verrelst, Jochem Delegido, Jesús |
author_role |
author |
author2 |
Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Orden, Luciano Berger, Katja Verrelst, Jochem Delegido, Jesús |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Índice de Superficie Foliar Trigo Invierno Imágenes por Satélites Riego Leaf Area Index Wheat Winter Satellite Imagery Irrigation Sentinel-1 |
topic |
Índice de Superficie Foliar Trigo Invierno Imágenes por Satélites Riego Leaf Area Index Wheat Winter Satellite Imagery Irrigation Sentinel-1 |
dc.description.none.fl_txt_mv |
Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments. EEA Hilario Ascasubi Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España Fil: Berger, Katja. Mantle Labs GmbH; Austria Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España |
description |
Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-02T14:29:02Z 2022-12-02T14:29:02Z 2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/13525 https://www.mdpi.com/2072-4292/14/22/5867 2072-4292 https://doi.org/10.3390/rs14225867 |
url |
http://hdl.handle.net/20.500.12123/13525 https://www.mdpi.com/2072-4292/14/22/5867 https://doi.org/10.3390/rs14225867 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Argentina .......... (nation) (World, South America) 7006477 |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Remote Sensing 14 (22) : 5867. (November 2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619172167811072 |
score |
12.559606 |