Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles

Autores
Caballero, Gabriel; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Casella, Alejandra An; Sanchez Angonova, Paolo Andres; Orden, Luciano; Berger, Katja; Verrelst, Jochem; Delegido, Jesús
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.
EEA Hilario Ascasubi
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay
Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Berger, Katja. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fuente
Remote Sensing 14 (22) : 5867. (November 2022)
Materia
Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/13525

id INTADig_e400428b2ba53d599bf72c07f6661d60
oai_identifier_str oai:localhost:20.500.12123/13525
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence AnglesCaballero, GabrielPezzola, Nestor AlejandroWinschel, Cristina InesCasella, Alejandra AnSanchez Angonova, Paolo AndresOrden, LucianoBerger, KatjaVerrelst, JochemDelegido, JesúsÍndice de Superficie FoliarTrigoInviernoImágenes por SatélitesRiegoLeaf Area IndexWheatWinterSatellite ImageryIrrigationSentinel-1Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.EEA Hilario AscasubiFil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; UruguayFil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; EspañaFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Berger, Katja. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaMDPI2022-12-02T14:29:02Z2022-12-02T14:29:02Z2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13525https://www.mdpi.com/2072-4292/14/22/58672072-4292https://doi.org/10.3390/rs14225867Remote Sensing 14 (22) : 5867. (November 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología AgropecuariaengArgentina .......... (nation) (World, South America)7006477info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:49Zoai:localhost:20.500.12123/13525instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:49.403INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
spellingShingle Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
Caballero, Gabriel
Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
title_short Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_full Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_fullStr Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_full_unstemmed Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_sort Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
dc.creator.none.fl_str_mv Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author Caballero, Gabriel
author_facet Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_role author
author2 Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
topic Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
dc.description.none.fl_txt_mv Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.
EEA Hilario Ascasubi
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay
Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Berger, Katja. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
description Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-02T14:29:02Z
2022-12-02T14:29:02Z
2022-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/13525
https://www.mdpi.com/2072-4292/14/22/5867
2072-4292
https://doi.org/10.3390/rs14225867
url http://hdl.handle.net/20.500.12123/13525
https://www.mdpi.com/2072-4292/14/22/5867
https://doi.org/10.3390/rs14225867
identifier_str_mv 2072-4292
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Argentina .......... (nation) (World, South America)
7006477
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Remote Sensing 14 (22) : 5867. (November 2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619172167811072
score 12.559606