Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
- Autores
- Gaffney, Rowan; Porensky, Lauren M.; Feng, Gao; Irisarri, Jorge Gonzalo Nicolás; Durante, Martin; Derner, Justin D.; Augustine, David J.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP
EEA Concepción del Uruguay
Fil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados Unidos
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina
Fil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados Unidos
Fil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos - Fuente
- Remote Sensing 10 (9) : 1474. (2018)
- Materia
-
Tierras de Pastos
Zona Semiárida
Biomasa
Biomasa sobre el Suelo
Sensores
Rangelands
Semiarid Zones
Biomass
Above Ground Biomass
Sensors
Aboveground Net Primary Production
MODIS
Sensores Remotos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3758
Ver los metadatos del registro completo
id |
INTADig_7b004d4b3bc4badc68b1f0eeeec0dee6 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3758 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships DifferGaffney, RowanPorensky, Lauren M.Feng, GaoIrisarri, Jorge Gonzalo NicolásDurante, MartinDerner, Justin D.Augustine, David J.Tierras de PastosZona SemiáridaBiomasaBiomasa sobre el SueloSensoresRangelandsSemiarid ZonesBiomassAbove Ground BiomassSensorsAboveground Net Primary ProductionMODISSensores RemotosMonitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPPEEA Concepción del UruguayFil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados UnidosFil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados UnidosFil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados UnidosFil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; ArgentinaFil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados UnidosFil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos2018-11-01T14:09:37Z2018-11-01T14:09:37Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3758https://www.mdpi.com/2072-4292/10/9/14742072-4292https://doi.org/10.3390/rs10091474Remote Sensing 10 (9) : 1474. (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:16:43Zoai:localhost:20.500.12123/3758instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:16:43.696INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
title |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
spellingShingle |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ Gaffney, Rowan Tierras de Pastos Zona Semiárida Biomasa Biomasa sobre el Suelo Sensores Rangelands Semiarid Zones Biomass Above Ground Biomass Sensors Aboveground Net Primary Production MODIS Sensores Remotos |
title_short |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
title_full |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
title_fullStr |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
title_full_unstemmed |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
title_sort |
Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ |
dc.creator.none.fl_str_mv |
Gaffney, Rowan Porensky, Lauren M. Feng, Gao Irisarri, Jorge Gonzalo Nicolás Durante, Martin Derner, Justin D. Augustine, David J. |
author |
Gaffney, Rowan |
author_facet |
Gaffney, Rowan Porensky, Lauren M. Feng, Gao Irisarri, Jorge Gonzalo Nicolás Durante, Martin Derner, Justin D. Augustine, David J. |
author_role |
author |
author2 |
Porensky, Lauren M. Feng, Gao Irisarri, Jorge Gonzalo Nicolás Durante, Martin Derner, Justin D. Augustine, David J. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Tierras de Pastos Zona Semiárida Biomasa Biomasa sobre el Suelo Sensores Rangelands Semiarid Zones Biomass Above Ground Biomass Sensors Aboveground Net Primary Production MODIS Sensores Remotos |
topic |
Tierras de Pastos Zona Semiárida Biomasa Biomasa sobre el Suelo Sensores Rangelands Semiarid Zones Biomass Above Ground Biomass Sensors Aboveground Net Primary Production MODIS Sensores Remotos |
dc.description.none.fl_txt_mv |
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP EEA Concepción del Uruguay Fil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos Fil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos Fil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados Unidos Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina Fil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados Unidos Fil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos |
description |
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-01T14:09:37Z 2018-11-01T14:09:37Z 2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/3758 https://www.mdpi.com/2072-4292/10/9/1474 2072-4292 https://doi.org/10.3390/rs10091474 |
url |
http://hdl.handle.net/20.500.12123/3758 https://www.mdpi.com/2072-4292/10/9/1474 https://doi.org/10.3390/rs10091474 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Remote Sensing 10 (9) : 1474. (2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846787514200752128 |
score |
12.982451 |