Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ

Autores
Gaffney, Rowan; Porensky, Lauren M.; Feng, Gao; Irisarri, Jorge Gonzalo Nicolás; Durante, Martin; Derner, Justin D.; Augustine, David J.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP
EEA Concepción del Uruguay
Fil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados Unidos
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina
Fil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados Unidos
Fil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fuente
Remote Sensing 10 (9) : 1474. (2018)
Materia
Tierras de Pastos
Zona Semiárida
Biomasa
Biomasa sobre el Suelo
Sensores
Rangelands
Semiarid Zones
Biomass
Above Ground Biomass
Sensors
Aboveground Net Primary Production
MODIS
Sensores Remotos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/3758

id INTADig_7b004d4b3bc4badc68b1f0eeeec0dee6
oai_identifier_str oai:localhost:20.500.12123/3758
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships DifferGaffney, RowanPorensky, Lauren M.Feng, GaoIrisarri, Jorge Gonzalo NicolásDurante, MartinDerner, Justin D.Augustine, David J.Tierras de PastosZona SemiáridaBiomasaBiomasa sobre el SueloSensoresRangelandsSemiarid ZonesBiomassAbove Ground BiomassSensorsAboveground Net Primary ProductionMODISSensores RemotosMonitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPPEEA Concepción del UruguayFil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados UnidosFil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados UnidosFil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados UnidosFil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; ArgentinaFil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados UnidosFil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos2018-11-01T14:09:37Z2018-11-01T14:09:37Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3758https://www.mdpi.com/2072-4292/10/9/14742072-4292https://doi.org/10.3390/rs10091474Remote Sensing 10 (9) : 1474. (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:16:43Zoai:localhost:20.500.12123/3758instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:16:43.696INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
title Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
spellingShingle Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
Gaffney, Rowan
Tierras de Pastos
Zona Semiárida
Biomasa
Biomasa sobre el Suelo
Sensores
Rangelands
Semiarid Zones
Biomass
Above Ground Biomass
Sensors
Aboveground Net Primary Production
MODIS
Sensores Remotos
title_short Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
title_full Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
title_fullStr Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
title_full_unstemmed Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
title_sort Using APAR to Predict Aboveground Plant Productivity in Semi-Arid Rangelands: Spatial and Temporal Relationships Differ
dc.creator.none.fl_str_mv Gaffney, Rowan
Porensky, Lauren M.
Feng, Gao
Irisarri, Jorge Gonzalo Nicolás
Durante, Martin
Derner, Justin D.
Augustine, David J.
author Gaffney, Rowan
author_facet Gaffney, Rowan
Porensky, Lauren M.
Feng, Gao
Irisarri, Jorge Gonzalo Nicolás
Durante, Martin
Derner, Justin D.
Augustine, David J.
author_role author
author2 Porensky, Lauren M.
Feng, Gao
Irisarri, Jorge Gonzalo Nicolás
Durante, Martin
Derner, Justin D.
Augustine, David J.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Tierras de Pastos
Zona Semiárida
Biomasa
Biomasa sobre el Suelo
Sensores
Rangelands
Semiarid Zones
Biomass
Above Ground Biomass
Sensors
Aboveground Net Primary Production
MODIS
Sensores Remotos
topic Tierras de Pastos
Zona Semiárida
Biomasa
Biomasa sobre el Suelo
Sensores
Rangelands
Semiarid Zones
Biomass
Above Ground Biomass
Sensors
Aboveground Net Primary Production
MODIS
Sensores Remotos
dc.description.none.fl_txt_mv Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP
EEA Concepción del Uruguay
Fil: Gaffney, Rowan. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Porensky, Lauren M. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
Fil: Feng, Gao. United States Department of Agriculture–Agricultural Research Service. Hydrology and Remote Sensing Laboratory; Estados Unidos
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina
Fil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados Unidos
Fil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
description Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP
publishDate 2018
dc.date.none.fl_str_mv 2018-11-01T14:09:37Z
2018-11-01T14:09:37Z
2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/3758
https://www.mdpi.com/2072-4292/10/9/1474
2072-4292
https://doi.org/10.3390/rs10091474
url http://hdl.handle.net/20.500.12123/3758
https://www.mdpi.com/2072-4292/10/9/1474
https://doi.org/10.3390/rs10091474
identifier_str_mv 2072-4292
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Remote Sensing 10 (9) : 1474. (2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846787514200752128
score 12.982451