Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ
- Autores
- Gaffney, Rowan; Porensky, Lauren; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; Derner, Justin; Augustine, David
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.
Fil: Gaffney, Rowan. United States Department of Agriculture. Agricultural Research Service; Argentina
Fil: Porensky, Lauren. United States Department of Agriculture. Agricultural Research Service; Argentina
Fil: Gao, Feng. United States Department of Agriculture. Agricultural Research Service; Argentina
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Durante, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay; Argentina
Fil: Derner, Justin. United States Department of Agriculture. Agricultural Research Service; Argentina
Fil: Augustine, David. United States Department of Agriculture. Agricultural Research Service; Argentina - Materia
-
ANPP
BIOMASS
LANDSAT
MODIS
NDVI
PLANT COMPOSITION
RADIATION USE EFFICIENCY
SPATIAL
TEMPORAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96143
Ver los metadatos del registro completo
id |
CONICETDig_058ff71e9b076a538b8385794a9b679f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96143 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differGaffney, RowanPorensky, LaurenGao, FengIrisarri, Jorge Gonzalo NicolásDurante, MartínDerner, JustinAugustine, DavidANPPBIOMASSLANDSATMODISNDVIPLANT COMPOSITIONRADIATION USE EFFICIENCYSPATIALTEMPORALhttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.Fil: Gaffney, Rowan. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Porensky, Lauren. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gao, Feng. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Durante, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay; ArgentinaFil: Derner, Justin. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Augustine, David. United States Department of Agriculture. Agricultural Research Service; ArgentinaMDPI AG2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96143Gaffney, Rowan; Porensky, Lauren; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; et al.; Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ; MDPI AG; Remote Sensing; 10; 9; 9-20182072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2072-4292/10/9/1474info:eu-repo/semantics/altIdentifier/doi/10.3390/rs10091474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:46Zoai:ri.conicet.gov.ar:11336/96143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:46.544CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
title |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
spellingShingle |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ Gaffney, Rowan ANPP BIOMASS LANDSAT MODIS NDVI PLANT COMPOSITION RADIATION USE EFFICIENCY SPATIAL TEMPORAL |
title_short |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
title_full |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
title_fullStr |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
title_full_unstemmed |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
title_sort |
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ |
dc.creator.none.fl_str_mv |
Gaffney, Rowan Porensky, Lauren Gao, Feng Irisarri, Jorge Gonzalo Nicolás Durante, Martín Derner, Justin Augustine, David |
author |
Gaffney, Rowan |
author_facet |
Gaffney, Rowan Porensky, Lauren Gao, Feng Irisarri, Jorge Gonzalo Nicolás Durante, Martín Derner, Justin Augustine, David |
author_role |
author |
author2 |
Porensky, Lauren Gao, Feng Irisarri, Jorge Gonzalo Nicolás Durante, Martín Derner, Justin Augustine, David |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ANPP BIOMASS LANDSAT MODIS NDVI PLANT COMPOSITION RADIATION USE EFFICIENCY SPATIAL TEMPORAL |
topic |
ANPP BIOMASS LANDSAT MODIS NDVI PLANT COMPOSITION RADIATION USE EFFICIENCY SPATIAL TEMPORAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.2 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP. Fil: Gaffney, Rowan. United States Department of Agriculture. Agricultural Research Service; Argentina Fil: Porensky, Lauren. United States Department of Agriculture. Agricultural Research Service; Argentina Fil: Gao, Feng. United States Department of Agriculture. Agricultural Research Service; Argentina Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Durante, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay; Argentina Fil: Derner, Justin. United States Department of Agriculture. Agricultural Research Service; Argentina Fil: Augustine, David. United States Department of Agriculture. Agricultural Research Service; Argentina |
description |
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96143 Gaffney, Rowan; Porensky, Lauren; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; et al.; Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ; MDPI AG; Remote Sensing; 10; 9; 9-2018 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96143 |
identifier_str_mv |
Gaffney, Rowan; Porensky, Lauren; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; et al.; Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ; MDPI AG; Remote Sensing; 10; 9; 9-2018 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2072-4292/10/9/1474 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs10091474 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083374469349376 |
score |
13.22299 |