Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ

Autores
Gaffney, Rowan; Porensky, Lauren M.; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; Derner, Justin D.; Augustine, David J.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Gaffney, Rowan. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Fil: Porensky, Lauren M. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Fil: Gao, Feng. US Department of Agriculture (USDA)-Agricultural Research Service (ARS). Hydrology and Remote Sensing Laboratory. Beltsville, USA.
Fil: Irisarri, Jorge Gonzalo Nicolás. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Laboratorio de Análisis Regional y Teledetección (LART). Buenos Aires, Argentina.
Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.
Fil: Derner, Justin D. USDA-ARS Rangeland Resources and Systems Research Unit. Cheyenne, USA.
Fil: Augustine, David J. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.
grafs., tbls.
Fuente
Remote Sensing
Vol.10, no.9
2-19
https://www.mdpi.com
Materia
NDVI
TEMPORAL
SPATIAL
PLANT COMPOSITION
RADIATION USE EFFICIENCY
MODIS
LANDSAT
BIOMASS
ANPP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2018gaffney

id FAUBA_66d6ca19eeeee4eb920140af3b6b58e4
oai_identifier_str snrd:2018gaffney
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differGaffney, RowanPorensky, Lauren M.Gao, FengIrisarri, Jorge Gonzalo NicolásDurante, MartínDerner, Justin D.Augustine, David J.NDVITEMPORALSPATIALPLANT COMPOSITIONRADIATION USE EFFICIENCYMODISLANDSATBIOMASSANPPFil: Gaffney, Rowan. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.Fil: Porensky, Lauren M. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.Fil: Gao, Feng. US Department of Agriculture (USDA)-Agricultural Research Service (ARS). Hydrology and Remote Sensing Laboratory. Beltsville, USA.Fil: Irisarri, Jorge Gonzalo Nicolás. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Laboratorio de Análisis Regional y Teledetección (LART). Buenos Aires, Argentina.Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.Fil: Derner, Justin D. USDA-ARS Rangeland Resources and Systems Research Unit. Cheyenne, USA.Fil: Augustine, David J. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.grafs., tbls.2018articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.3390/rs10091474issn:2072-4292http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018gaffneyRemote SensingVol.10, no.92-19https://www.mdpi.comreponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-11T10:20:17Zsnrd:2018gaffneyinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-11 10:20:18.416FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
title Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
spellingShingle Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
Gaffney, Rowan
NDVI
TEMPORAL
SPATIAL
PLANT COMPOSITION
RADIATION USE EFFICIENCY
MODIS
LANDSAT
BIOMASS
ANPP
title_short Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
title_full Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
title_fullStr Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
title_full_unstemmed Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
title_sort Using apar to predict aboveground plant productivity in semi - arid rangelands : spatial and temporal relationships differ
dc.creator.none.fl_str_mv Gaffney, Rowan
Porensky, Lauren M.
Gao, Feng
Irisarri, Jorge Gonzalo Nicolás
Durante, Martín
Derner, Justin D.
Augustine, David J.
author Gaffney, Rowan
author_facet Gaffney, Rowan
Porensky, Lauren M.
Gao, Feng
Irisarri, Jorge Gonzalo Nicolás
Durante, Martín
Derner, Justin D.
Augustine, David J.
author_role author
author2 Porensky, Lauren M.
Gao, Feng
Irisarri, Jorge Gonzalo Nicolás
Durante, Martín
Derner, Justin D.
Augustine, David J.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv NDVI
TEMPORAL
SPATIAL
PLANT COMPOSITION
RADIATION USE EFFICIENCY
MODIS
LANDSAT
BIOMASS
ANPP
topic NDVI
TEMPORAL
SPATIAL
PLANT COMPOSITION
RADIATION USE EFFICIENCY
MODIS
LANDSAT
BIOMASS
ANPP
dc.description.none.fl_txt_mv Fil: Gaffney, Rowan. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Fil: Porensky, Lauren M. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Fil: Gao, Feng. US Department of Agriculture (USDA)-Agricultural Research Service (ARS). Hydrology and Remote Sensing Laboratory. Beltsville, USA.
Fil: Irisarri, Jorge Gonzalo Nicolás. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Laboratorio de Análisis Regional y Teledetección (LART). Buenos Aires, Argentina.
Fil: Durante, Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay (EEA Concepción del Uruguay). Entre Ríos, Argentina.
Fil: Derner, Justin D. USDA-ARS Rangeland Resources and Systems Research Unit. Cheyenne, USA.
Fil: Augustine, David J. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.
grafs., tbls.
description Fil: Gaffney, Rowan. US Department of Agriculture (USDA). Agricultural Research Service (ARS) Rangeland Resources and Systems Research Unit. Fort Collins, CO, USA.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.3390/rs10091474
issn:2072-4292
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018gaffney
identifier_str_mv doi:10.3390/rs10091474
issn:2072-4292
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018gaffney
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Remote Sensing
Vol.10, no.9
2-19
https://www.mdpi.com
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1842975191169236992
score 12.993085