Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest
- Autores
- Sousa Júnior, Vicente de Paula; Sparacino, Javier; Espindola, Giovana Mira de; Assis, Raimundo Jucier Sousa de
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Remote sensing is valuable for estimating aboveground biomass (AGB) stocks. However, its application in agricultural and pasture areas is limited compared with forest areas. This study quantifies AGB in agriculture–pasture mosaics within Brazil’s Campo Maior Complex (CMC). The methodology employs remote sensing cloud processing and utilizes an estimator to incorporate vegetation indices. The results reveal significant changes in biomass values among land use and land cover classes over the past ten years, with notable variations observed in forest plantation, pasture, sugar cane, and soybean areas. The estimated AGB values range from 0 to 20 Mg.ha−1 (minimum), 53 to 419 Mg.ha−1 (maximum), and 19 to 57 Mg.ha−1 (mean). In Forest formation areas, AGB values range from approximately 0 to 278 Mg.ha−1, with an average annual value of 56.44 Mg.ha−1. This study provides valuable insights for rural landowners and government officials in managing the semiarid territory and environment. It aids in decision making regarding agricultural management, irrigation and fertilization practices, agricultural productivity, land use and land cover changes, biodiversity loss, soil degradation, conservation strategies, the identification of priority areas for environmental restoration, and the optimization of resource utilization.
Fil: Sousa Júnior, Vicente de Paula. Universidade Federal Do Piaui.; Brasil
Fil: Sparacino, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Ecología y Recursos Naturales Renovables; Argentina
Fil: Espindola, Giovana Mira de. Universidade Federal Do Piaui.; Brasil
Fil: Assis, Raimundo Jucier Sousa de. Universidade Federal Do Piaui.; Brasil - Materia
-
SEMIARID
ABOVEGROUND BIOMASS
REMOTE SENSING
LANDSAT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242024
Ver los metadatos del registro completo
id |
CONICETDig_3dea13ae8d061b290f276a6fa85ffe79 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242024 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical ForestSousa Júnior, Vicente de PaulaSparacino, JavierEspindola, Giovana Mira deAssis, Raimundo Jucier Sousa deSEMIARIDABOVEGROUND BIOMASSREMOTE SENSINGLANDSAThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Remote sensing is valuable for estimating aboveground biomass (AGB) stocks. However, its application in agricultural and pasture areas is limited compared with forest areas. This study quantifies AGB in agriculture–pasture mosaics within Brazil’s Campo Maior Complex (CMC). The methodology employs remote sensing cloud processing and utilizes an estimator to incorporate vegetation indices. The results reveal significant changes in biomass values among land use and land cover classes over the past ten years, with notable variations observed in forest plantation, pasture, sugar cane, and soybean areas. The estimated AGB values range from 0 to 20 Mg.ha−1 (minimum), 53 to 419 Mg.ha−1 (maximum), and 19 to 57 Mg.ha−1 (mean). In Forest formation areas, AGB values range from approximately 0 to 278 Mg.ha−1, with an average annual value of 56.44 Mg.ha−1. This study provides valuable insights for rural landowners and government officials in managing the semiarid territory and environment. It aids in decision making regarding agricultural management, irrigation and fertilization practices, agricultural productivity, land use and land cover changes, biodiversity loss, soil degradation, conservation strategies, the identification of priority areas for environmental restoration, and the optimization of resource utilization.Fil: Sousa Júnior, Vicente de Paula. Universidade Federal Do Piaui.; BrasilFil: Sparacino, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Ecología y Recursos Naturales Renovables; ArgentinaFil: Espindola, Giovana Mira de. Universidade Federal Do Piaui.; BrasilFil: Assis, Raimundo Jucier Sousa de. Universidade Federal Do Piaui.; BrasilMultidisciplinary Digital Publishing Institute2023-08-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242024Sousa Júnior, Vicente de Paula; Sparacino, Javier; Espindola, Giovana Mira de; Assis, Raimundo Jucier Sousa de; Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest; Multidisciplinary Digital Publishing Institute; ISPRS International Journal of Geo-Information; 12; 9; 27-8-2023; 354-3732220-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi12090354info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2220-9964/12/9/354info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:38Zoai:ri.conicet.gov.ar:11336/242024instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:39.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
title |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
spellingShingle |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest Sousa Júnior, Vicente de Paula SEMIARID ABOVEGROUND BIOMASS REMOTE SENSING LANDSAT |
title_short |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
title_full |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
title_fullStr |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
title_full_unstemmed |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
title_sort |
Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest |
dc.creator.none.fl_str_mv |
Sousa Júnior, Vicente de Paula Sparacino, Javier Espindola, Giovana Mira de Assis, Raimundo Jucier Sousa de |
author |
Sousa Júnior, Vicente de Paula |
author_facet |
Sousa Júnior, Vicente de Paula Sparacino, Javier Espindola, Giovana Mira de Assis, Raimundo Jucier Sousa de |
author_role |
author |
author2 |
Sparacino, Javier Espindola, Giovana Mira de Assis, Raimundo Jucier Sousa de |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SEMIARID ABOVEGROUND BIOMASS REMOTE SENSING LANDSAT |
topic |
SEMIARID ABOVEGROUND BIOMASS REMOTE SENSING LANDSAT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Remote sensing is valuable for estimating aboveground biomass (AGB) stocks. However, its application in agricultural and pasture areas is limited compared with forest areas. This study quantifies AGB in agriculture–pasture mosaics within Brazil’s Campo Maior Complex (CMC). The methodology employs remote sensing cloud processing and utilizes an estimator to incorporate vegetation indices. The results reveal significant changes in biomass values among land use and land cover classes over the past ten years, with notable variations observed in forest plantation, pasture, sugar cane, and soybean areas. The estimated AGB values range from 0 to 20 Mg.ha−1 (minimum), 53 to 419 Mg.ha−1 (maximum), and 19 to 57 Mg.ha−1 (mean). In Forest formation areas, AGB values range from approximately 0 to 278 Mg.ha−1, with an average annual value of 56.44 Mg.ha−1. This study provides valuable insights for rural landowners and government officials in managing the semiarid territory and environment. It aids in decision making regarding agricultural management, irrigation and fertilization practices, agricultural productivity, land use and land cover changes, biodiversity loss, soil degradation, conservation strategies, the identification of priority areas for environmental restoration, and the optimization of resource utilization. Fil: Sousa Júnior, Vicente de Paula. Universidade Federal Do Piaui.; Brasil Fil: Sparacino, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Ecología y Recursos Naturales Renovables; Argentina Fil: Espindola, Giovana Mira de. Universidade Federal Do Piaui.; Brasil Fil: Assis, Raimundo Jucier Sousa de. Universidade Federal Do Piaui.; Brasil |
description |
Remote sensing is valuable for estimating aboveground biomass (AGB) stocks. However, its application in agricultural and pasture areas is limited compared with forest areas. This study quantifies AGB in agriculture–pasture mosaics within Brazil’s Campo Maior Complex (CMC). The methodology employs remote sensing cloud processing and utilizes an estimator to incorporate vegetation indices. The results reveal significant changes in biomass values among land use and land cover classes over the past ten years, with notable variations observed in forest plantation, pasture, sugar cane, and soybean areas. The estimated AGB values range from 0 to 20 Mg.ha−1 (minimum), 53 to 419 Mg.ha−1 (maximum), and 19 to 57 Mg.ha−1 (mean). In Forest formation areas, AGB values range from approximately 0 to 278 Mg.ha−1, with an average annual value of 56.44 Mg.ha−1. This study provides valuable insights for rural landowners and government officials in managing the semiarid territory and environment. It aids in decision making regarding agricultural management, irrigation and fertilization practices, agricultural productivity, land use and land cover changes, biodiversity loss, soil degradation, conservation strategies, the identification of priority areas for environmental restoration, and the optimization of resource utilization. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242024 Sousa Júnior, Vicente de Paula; Sparacino, Javier; Espindola, Giovana Mira de; Assis, Raimundo Jucier Sousa de; Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest; Multidisciplinary Digital Publishing Institute; ISPRS International Journal of Geo-Information; 12; 9; 27-8-2023; 354-373 2220-9964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242024 |
identifier_str_mv |
Sousa Júnior, Vicente de Paula; Sparacino, Javier; Espindola, Giovana Mira de; Assis, Raimundo Jucier Sousa de; Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest; Multidisciplinary Digital Publishing Institute; ISPRS International Journal of Geo-Information; 12; 9; 27-8-2023; 354-373 2220-9964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi12090354 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2220-9964/12/9/354 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614130903810048 |
score |
13.070432 |